Automated Reinforcement Learning (AutoRL): A Survey and Open Problems

Jack Parker-Holder^{1,*}, Raghu Rajan^{2,*}, Xingyou Song^{3,*}, André Biedenkapp², Yingjie Miao³, Theresa Eimer⁴, Baohe Zhang², Vu Nguyen⁵, Roberto Calandra⁶, Aleksandra Faust^{3,†}, Frank Hutter^{2,7,†}, Marius Lindauer^{4,†}

^co-first authors

[†] co-last authors

universitätfreiburg

¹ University of Oxford ² University of Freiburg ³ Google Research, Brain Team ⁴ Leibniz University Hannover ⁵ Amazon Australia ⁶ Meta Al ⁷ Bosch Center for Artificial Intelligence

Overview

- Reinforcement Learning (RL) often highly sensitive to design choices
- AutoML has automated design choices in other parts of Machine Learning
 - Initial promising results in RL
- Additional challenges unique to RL
- AutoRL has been gathering momentum as an important area of research
 - Existing approaches like metaRL, curriculum learning, meta-gradients
- This work **aims** to:
 - Unify the field of AutoRL with a **common taxonomy**
 - Survey each of these areas in detail

AutoRL • Bi-level optimization: $\max_\zeta f(\zeta, heta^*)$ s.t. $heta^*\in arg\max_ heta J(heta;\zeta)$ Outer Objectiv Inner Objective • Pipeline components: Learner Tunables: Learner • Algorithm $\gamma:\sum \gamma^t r_t$ • Hyperparameters

• Pose open problems

Taxonomy and General Properties

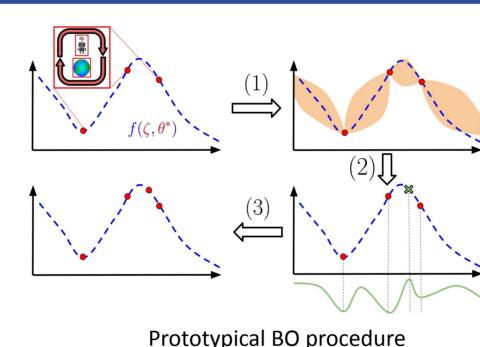
Class	Algorithm properties				ies	What is automated?
Random/Grid Search (4.1)	<u>ቶቶቶ</u>		\Rightarrow	1	\doteq	hyperparameters, architecture, algorithm
Bayesian Optimization (4.2)	<u>ቶቶቶ</u>		\Rightarrow	1	÷	hyperparameters, architecture, algorithm
Evolutionary Approaches (4.3)	<u>ቶቶቶ</u>		\Rightarrow	1	\approx	hyperparameters, architecture, algorithm
Meta-Gradients (4.4)	ቶ	∇	\rightarrow	•	\approx	hyperparameters
Blackbox Online Tuning (4.5)	ቶ		\rightarrow	1	\approx	hyperparameters
Learning Algorithms (4.6)	<u>ቶቶቶ</u>		\Rightarrow	•	÷	algorithm
Environment Design (4.7)	<u>ቶቶቶ</u>		\Rightarrow	•	\approx	environment

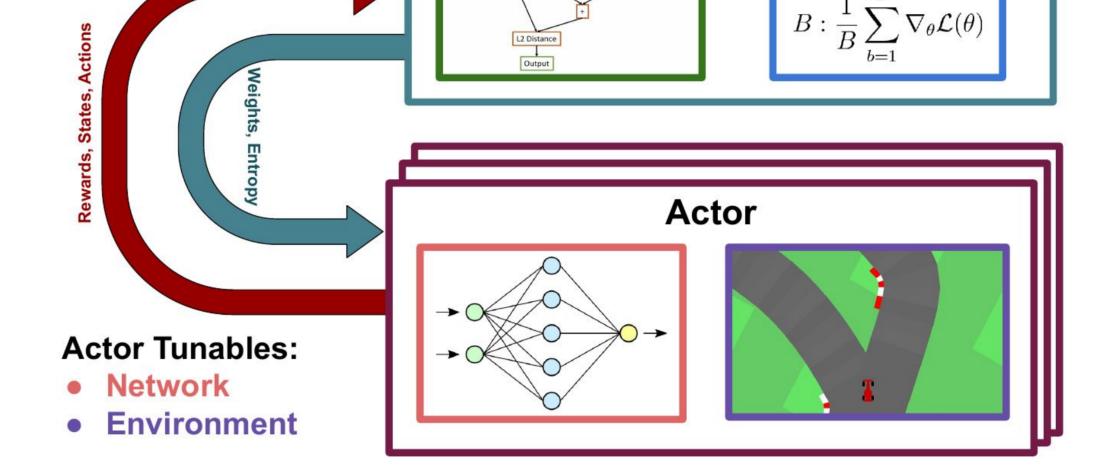
† only uses a single trial, *†††* requires multiple trials

- ∇ requires differentiable variables, \blacksquare works with non-differentiable hyperparameters
- \Rightarrow parallelizable \rightarrow not parallelizable
- ✓ works for any RL algorithm, works for only some classes of RL algorithms
- \doteq static optimization, \approx dynamic optimization

Bayesian Optimization (BO) Based

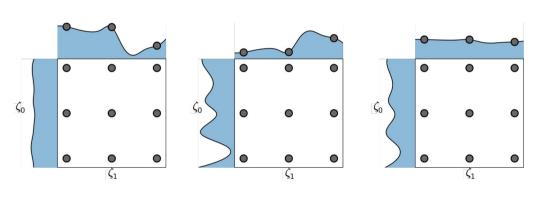
- Builds a **model** of the response surface
 - Queries 'better' points to evaluate
- Trades off exploration-exploitation



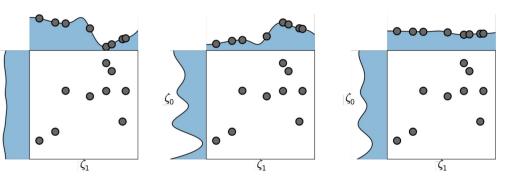


Random/Grid Search Based

- **Easy** to implement
- Good for visualizing
- **Do not use information** obtained during optimisation
 - Multi-fidelity methods like Hyperband [Li et al. 2017] implicitly do this
- Do not scale well to high dimensions and are **not dynamic**



Grid search at various points during the optimisation



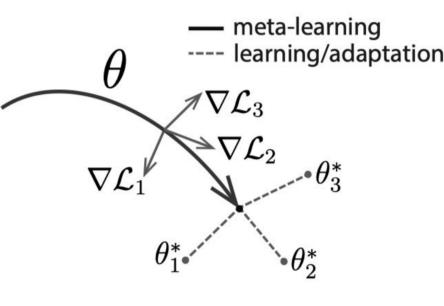
Random search at various points during the optimisation

Evolutionary Approaches

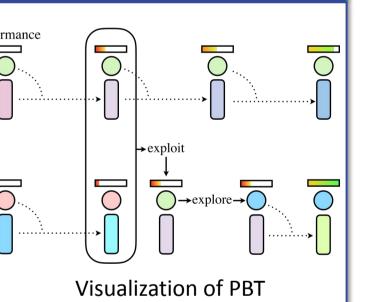
- AlphaGo improved from 50% to 65% win rate in self-play [Chen et al. 2018]
- Multi-fidelity
 - BOHB [Falkner et al. 2017] used for tuning architecture and HPs for Learning to design RNA [Runge et al. 2019]
 - BO for Iterative Learning (BOIL) [Nguyen et al. 2020] used knowledge of learning curves to efficiently tune HPs
- Not many approaches yet that perform dynamic tuning

Meta-Gradients

- Optimise meta-parameters in an outer loop using gradients of an objective w.r.t. meta-parameters, optimise parameters in an inner loop
- Tune **online** in a single run
- Efficient
- Require **differentiable** outer objective
- Meta-gradient RL [Xu et al. 2018] considered gradients of the objective w.r.t. the **bootstrapping hyperparameter,** λ , and the **discount factor,** γ
- RL-DARTS [Miao et al., 2021] performs differentiable architecture search in an



- Maintain populations and mutate members' hyperparameters and parameters
- Population-Based Training (PBT) [Jaderberg] et al. 2017]-like methods capable of **dynamic tuning**, $\overline{\left[\begin{array}{c} 0\\ 0\end{array}\right]}$ exploit top-performing members, explore their HPs



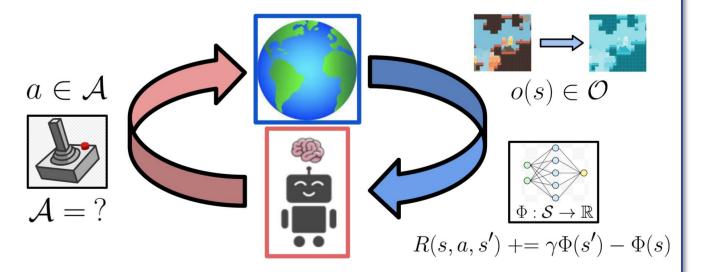
- Zhang et al. 2021 compare random, BO-based, PBT-like approaches
- Methods like NEAT [Stanley & Miikkulainen, 2002] evolve both Neural Network weights and architectures
- Hybrid approaches such as PB2 [Parker-Holder et al. 2020] and DEHB [Awad et al. 2021] employ models to increase efficiency

Blackbox Online Tuning

- Adapt HPs on the fly
- Agent57 [Badia et al. 2020] uses multi-armed **bandits** to adaptively select from **several exploration policies** and achieves superhuman performance in all 57 Atari games
- More **flexible** as it is blackbox but can be inefficient

Environment Design

Optimise environment components



RL setting

nage taken from MAML [Finn et al. 201

Learning RL Algorithms

- Learning to Learn: RL2 [Duan et al. 2016] use an RNN with **past history as input** to tackle interrelated tasks
- Meta-learn loss function: Loss function is a neural **network** as in Evolved Policy Gradient [Houthooft] et al., 2018] which provides a loss function to be optimised in an inner loop. Or the loss function is Visualisation of an RL loss function as a DAG represented as a **symbolic expression**, e.g., as a Directed Acyclic Graph (DAG) in Evolving reinforcement learning algorithms [Co-Reyes et al. 2021]
- Most MetaRL methods come under this category

• Reward Shaping: Faust et al. 2019 use evolutionary search to shape parametric rewards

Examples of Optimizable components of an environment: Action Space, A; Observation Space, O; Reward function, R

- Observation Space: DrAC [Raileanu] et al. 2020] use bandits to select image transformation (e.g., crop, rotate, flip) to apply to the observations
- Multiple Environment Components, Unsupervised: Curriculum learning approaches such as POET [Wang et al. 2019] and PAIRED [Dennis et al. 2020] modify the **initial state distribution** and **state/observation space** to present easier problems initially to speed up learning
- Multiple Environment Components, Supervised: Learning Synthetic Environments [Ferreira et al. 2021] learns dynamics and reward functions as NNs which are optimised in an outer loop

