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Overview

Reinforcement Learning (RL) often highly sensitive to design choices - Bi-level optimization: max, f(¢,6) s.t. 6 € argmaxg J(6; ()
AutoML has automated design choices in other parts of Machine Learning

* |nitial promising results in RL
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. Additional challenges unique to RL Outer Objective inner Objective
. AutoRL has been gathering momentum as an important area of research - Pipeline components:

e Existing approaches like metaRL, curriculum learning, meta-gradients ';eigegrmﬁb'eﬁ , Learner
. This work aims to: e Hyperparameters
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* Unify the field of AutoRL with a common taxonomy

* Survey each of these areas in detail
e Pose open problems

Rewards, States, Actions

Taxonomy and General Properties

Class Algorithm properties What is automated?
Random /Grid Search (4.1) ttt+ B = V = hyperparameters, architecture, algorithm Actor Tunables:
Bayesian Optimization (4.2) ttt+ B = V = hyperparameters, architecture, algorithm e Network
Evolutionary Approaches (4.3) ttt B = V = hyperparameters, architecture, algorithm * Environment
Meta-Gradients (4.4) in V — ~ hyperparameters
Blackbox Online Tuning (4.5) 1 B — / = hyperparameters
Learning Algorithms (4.6) tHt B = = algorithm
Environment Design (4.7) tHt B = ~~ environment . Easy to impl ement ot Ry e
T only uses a single trial, +1t requires multiple trials . Good for visualizing Co} : : : Ci: : : CO% : o o
V requires differentiable variables, B works with non-differentiable hyperparameters ] ] i i
_, varallelizable — not parallelizable . Do not use information obtained during : . :
v works for any RL algorithm, © works for only some classes of RL algorithms optimisation Grid search at various points during the optimisation
= static optimization, ~ dynamic optimization . Multi-fidelity methods like Hyperband D P N
[Li et al. 2017] implicitly do this } ‘uos i ‘oo % ‘oo
BayGSIan 0pt|mlzat|0n (BO) Based . Do not scale well to high dimensionsand ~ #* | J= | 3~
. Builds a model of the response surface 2 N . are not dynamic encom seareh e verovs poms Surine fhe opmBeTer
‘ \\\ ;g NI j -
°* Queries bEtter. pOmtS tO. eva.luate \ f(C,G*)\‘\; — Evol utlonary Approaches
. Trades off exploration-exploitation S .20, — .
. AlphaGo improved from 50% to 65% win rate in |~/ . &&|~ /N - Maintain populations and mutate members’ =" (5 5 T
self-play [Chen ot aI 2018] - S ki e hyperparameters and parameters wCightsD ..... R U ..... L U o D
. Multi-fidelity prototypical BO procedure . Population-Based Training (PBT) [Jaderberg — 'ﬁ*%jmﬁ _
* BOHB [Falkner et al. 2017] used for tuning architecture and HPs for et al. 2017]-like methods capable of dynamic tuning, U ...... ) 0 0

exploit top-performing members, explore their HPs Visualization of PBT
e Zhang et al. 2021 compare random, BO-based, PBT-like approaches
. Methods like NEAT [Stanley & Miikkulainen, 2002] evolve both Neural
Network weights and architectures
. Hybrid approaches such as PB2 [Parker-Holder et al. 2020] and DEHB

Meta-G radients [Awad et al. 2021] employ models to increase efficiency

Learning to design RNA [Runge et al. 2019]

* BO for Iterative Learning (BOIL) [Nguyen et al. 2020] used knowledge
of learning curves to efficiently tune HPs
Not many approaches yet that perform dynamic tuning

. Optimise meta-parameters in an outer loop using gradients of an Blackbox Online Tuning
objective w.r.t. meta-parameters, optimise parameters in an inner loop

. Tune online in a single run + Adapt HPs on the fly

. Efficient . Agent57 [Badia et al. 2020] uses multi-armed .

. Require differentiable outer objective — metalearning bandits to adaptively select from several exploration

. Meta-gradient RL [Xu et al. 2018] considered 0 ";meg/adaptat'on policies and achieves superhuman performance in all 57 Atari games
gradients of the objective w.r.t. the bootstrapping %@ . . More flexible as it is blackbox but can be inefficient
hyperparameter, A, and the discount factor, y R v - -

. RL-DARTS [Miao et al., 2021] performs 01" \“-9; E"Vlronment DeSIQn
differentiable architecture search in an . Optimise environment components =
RL setting o of a POMDP aeA

. Reward Shaping: Faust et al. 2019

P
Learn|ng RL Algonth ms use evolutionary search to shape 4= .g. el

parametric rewards

0:S — List[R] Sra1 0':S - List[R] Examples of Optimizable components of an environment:
° Learnlng to Learn: RL2 [Duan et al. 2016] USE \/ ~. « Observation Space DrAC [Ra”eanu Action Space, A; Observation Space, O; Reward function, R

NN: S — List[R] a; NN: S — List[R]
fan RNN with past history as input to tackle N y [ et al. 2020] use bandits to select image transformation (e.g., crop,
interrelated tasks . o 0 rotate, flip) to apply to the observations
. Meta-learn .Ioss functlon:.Loss fo?CtIOH is a neural . Multiple Environment Components, Unsupervised: Curriculum
network as in Evolved Policy Gradient [Houthooft

. _ | i earning approaches such as POET [Wang et al. 2019] and PAIRED

et a.I., .2018.] Wh'Fh provides a loss function t? b? Dennis et al. 2020] modify the initial state distribution and
optimised in an inner |00.I0- Or the !055 function is | Viualistion ofan it loss unction 2: 2 DAG state/observation space to present easier problems initially to speed
represented as a symbolic expression, e.g., as a Directed Acyclic Graph up learning

(DAG) in Evolving reinforcement learning algorithms [Co-Reyes et al. . Multiple Environment Components, Supervised: Learning Synthetic

2021] | Environments [Ferreira et al. 2021] learns dynamics and reward
- Most MetaRL methods come under this category functions as NNs which are optimised in an outer loop




