# TempoRL: Learning When to Act

André Biedenkapp<sup>1</sup>, Raghu Rajan<sup>1</sup>, Frank Hutter<sup>1</sup>, and Marius Lindauer<sup>2</sup> <sup>1</sup>University of Freiburg, <sup>2</sup>Leibniz University Hannover

## universitätfreiburg



Paper: http://proceedings.mlr.press/v139/biedenkapp21a.html

### In a Nutshell

- We propose a **proactive way of doing RL**
- We introduce **skip-connections into MDPs** 
  - Use of action repetition
  - Faster propagation of rewards
- We propose a novel algorithm using skip-connections 3.
  - Learn what action to take & when to make a new decision
  - Condition *when* on *what*
- We evaluate our approach in a variety of settings 4. Tabular Q-learning on Grid-World (see below)

## Information Propagation w/ Skip Connections

What action?: $Q^{\pi}(s,*) \rightarrow a$ 

When to switch?:  $Q^{\pi}(s,*|a) \rightarrow skip$ 

- DQN on featurized environments (LunarLandar, MountainCar)
- DDPG on featurized environments (Pendulum)
- DQN with image states on Atari (Pong, Qbert, Freeway, MsPacman, BeamRider)



- Action repetition introduces skips
- Information can be propagated faster along skips

Ҁ₁

With large skips, multiple smaller skips can be observed

#### Evaluation Performance of Tabular Q-learning Agents



Vanilla Q-learning: 16 decisions

#### #Episodes

TempoRL Q-learning: 3 decisions  $\rightarrow$  proactive policies can be learned much quicker

![](_page_0_Figure_29.jpeg)