
Towards Self-Paced Context Evaluation for
Contextual Reinforcement Learning

Theresa Eimer 1 André Biedenkapp 2 Frank Hutter 2 3 Marius Lindauer 1

Abstract
Reinforcement Learning has performed very well
on games and lab-based tasks. However, learn-
ing policies across a distribution of instances of
the same task still remains challenging. Recent
approaches assume either little variation between
instances or an unlimited amount of training ex-
amples from a given distribution. Both properties
are not always feasible in real-world applications.
Thus, we need methods that enable agents to gen-
eralize from a limited set of example instances or
experiences. We present an approach, based on
self-paced learning, that allows to exploit the in-
formation contained in state values during training
to accelerate and improve training performance
as well as generalization capabilities, independent
of the problem domain at hand. The proposed
Self-Paced Context Evaluation (SPaCE) provides
a way to automatically generate instance curricula
online with little computational overhead.

1. Introduction
Progress in reinforcement learning (RL) so far has largely
been made in artificial settings with ideal conditions, such
as unlimited environment interactions (Silver et al., 2016)
or availability of a target distribution to learn (Abbeel & Ng,
2004). When intending to apply RL in real-world domains,
such as healthcare or autonomous driving, it is unrealistic
to expect these idealized settings. An RL agent will have
to be able to handle both larger variations in instance dis-
tributions for the same task and, at the same time, limited
access to samples from the same distribution. This could be
achieved either through offline RL with previously collected
experiences (Fu et al., 2020) or online by achieving the best
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performance possible on a limited set of instances from the
same distribution; the latter is our focus here. In these cases,
generalization is an even greater challenge than in an ide-
alized lab setting, requiring a well thought-out strategy to
maximize learning from our limited data.

A method that has been shown to both accelerate learning
but also improve generalization performance in RL is Cur-
riculum Learning (CL; Bengio et al., 2009; Florensa et al.,
2018; Wang et al., 2019). Similar to the way humans learn,
CL aims to exploit knowledge gained from easy instances
to solve harder ones. In order to do this, instead of training
on instances in a round robin fashion, i.e., iterating over all
instances in an arbitrarily fixed order, the agent starts train-
ing on easy ones while the difficulty is increased over time.
Manually finding the best instance ordering for an agent,
however, requires expert knowledge about both the task and
the RL algorithm. The problem is further complicated by
the fact that the timing at which new instances should be
added also plays a crucial role. Adding easy instances too
slowly will not give the agent the opportunity to leverage
the knowledge from previous tasks, while adding difficult
instances to quickly may not allow it to learn at all.

Although various curriculum learning methods for RL have
emerged, they assume unlimited access to a distribution
from which to sample instances (OpenAI et al., 2019; Klink
et al., 2019; 2020). Generally, they propose that choosing a
narrower slice of this distribution makes learning the task
easier, thus beginning training by sampling from a subset of
the final instance distribution and widening it as the agent
improves. Such methods, while effective, are not directly
applicable to many potential applications of RL without a
generator to sample from such a distribution.

In this work, we present an automatic curriculum learn-
ing method for contextual RL that requires neither domain
knowledge nor access to a distribution from which one
can sample. Our method, Self-Paced Context Evaluation
(SPaCE), evaluates the difficulty of given instances instead
of sampling instances to match the current difficulty level.
To assess instance difficulty efficiently and accurately, we
use an agent’s own knowledge, contained in the value func-
tion. Thus, we can use any RL agent with a value-function,
including value-based agents and policy gradient agents, to
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score the current subjective difficulty of training instances
with a single forward pass over the training set. These dif-
ficulty estimations let us order the instances in the training
set freely according to the agent’s current performance. We
show that SPaCE is capable of outperforming round robin
as a default instance ordering on the contextual PointMass
environment (Klink et al., 2020) both during training and in
generalization to an unseen test set.

2. Contextual Reinforcement Learning
We model RL across different instances of the same task as
a contextual Markov Decision Process (cMDP). An instance
here could mean a different goal position in a maze task or a
different object for a robot hand to pick up. Let I be a set of
instances i, then the contextual MDPMI is a collection of
MDPsMI := {Mi}i∈I withMi := (S,A, Ti, Ri) (Hal-
lak et al., 2015). As the underlying task stays the same, we
assume the state and action spaces (S and A, respectively)
are consistent across all instances; however, the transition
and reward functions (Ti and Ri, respectively) are unique
to each instance.1

An optimal policy π∗ for this cMDP optimizes the expected
return over all i ∈ I (Klink et al., 2020):

π∗ ∈ arg max
π∈Π

1

|I|
∑
i∈I

Eπ,tγtRπi (st). (1)

As the expectation depends on the given instance, an agent
solving the cMDP needs to be given the instance context
in order to differentiate between instances. This will be
indicated as ci for instance i ∈ I.

3. Related Work
POET (Wang et al., 2019) and ADR (OpenAI et al., 2019)
are two methods that use CL to advance the instance dif-
ficulty for a given task towards open-endedness. POET
surpassed what conventionally trained agents could achieve
by evolving instances in parallel s.t. their difficulty con-
tinually increased to match the agent’s capabilities. Newly
sampled instances were assessed using domain knowledge
and resampled if needed. ADR, meanwhile, was used to
solve a Rubik’s cube with a robot hand from more and more
difficult positions. The cube positions are sampled from an
expanding distribution that is updated whenever the agent
has solved a sufficient number of cubes. In contrast to this
line of work, we assume to have access only to a limited
number of example instances from which we can learn.

Similarly to ADR, Goal GAN aims to provide the agent
with instances of increasing difficulty, but uses a generative

1For simplicity, we assume s0 to be the starting state of the
cMDP and independent of the context. Nevertheless, SPaCE can
be extended to context-specific distributions over possible s0.

adversarial network to generate these instances (Florensa
et al., 2018). In this setting, an agent acts as discriminator,
indicating by its success ratio whether generated samples are
of the desired difficulty. As generator and discriminator are
trained jointly, this automatically generates a curriculum.

While these methods are conscious of an agent’s progress,
Self-Paced Learning (SPL; Kumar et al., 2010) suggests
to explicitly use the agent’s performance to construct the
curriculum, allowing it to learn at its own pace. Exhaus-
tively evaluating the agent on all available instances would
be inefficient for RL, so self-paced RL methods usually use
a state value estimation as a stand in. Self-Paced Contex-
tual Reinforcement Learning (Klink et al., 2019) extends
an instance sampling distribution, as done in ADR, but the
extension is paced according to the agent’s performance es-
timate. Self-Paced Deep Reinforcement Learning (SPDRL;
Klink et al., 2020) extends upon this idea and shows self-
paced learning to outperform other CL methods like the
above mentioned goal GAN. This is similar to our proposed
method, but still assumes that we know the underlying target
instance distribution.

ALLSTEPS (Xie et al., 2020) uses SPL in a different way,
not to sample new instances but to extend a continuous path
for human walking training. By continuously simulating
and evaluating possible next stepping positions, they create
open-ended paths of increasing difficulty.

4. Self-Paced Context Evaluation
In order to generate a curriculum without any prior knowl-
edge of the target domain, we take advantage of the informa-
tion contained in the agent’s state value predictions. Over
time, V (st, ci) converges towards the maximum expected
reward gained from state st in instance i when following the
current policy π (Sutton & Barto, 1998). Therefore, we pro-
pose V (s0, ci) as an estimate of the total expected reward
given s0 of any i ∈ I and define instance difficulty wrt π
and ∀i ∈ I as d(i) = V (s0, ci). As most state-of-the-art RL
algorithms use a value-based critic, this difficulty estimation
is easily computed during training.

The difficulty metric is used to compile progressively larger,
more difficult training sets every time the agent starts to
converge on the previous one, as it has learned a suitable
policy on the simpler instances. We measure this in terms
of the difference in value predictions of the training set
compared to the last training iteration. Once the absolute
change in state values of the current training set falls below
a predefined percentage η between iterations, the size of the
training set is increased and its instances are chosen accord-
ing to their new difficulty estimation (see Algorithm 1). η is
a hyperparameter of SPaCE, as is the step size κ at which
we increase the instance set. The size of the training set is
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Algorithm 1: SPaCE curriculum generation
Input :Agent with policy π and value function V0,

Instance set I, performance threshold η,
instance set step size κ, number of episodes N

size = 0
∆V = 0
for n ≤ N do

if ∆V < η·
∑
i∈Icurr

|Vn(s0, ci)| then
size+ = κ

forall i ∈ I do
predictions[i]← V

n(s0,ci)

dn = sort_descending(predictions)[:size]
Icurr := {i ∈ I | Vn(s0, ci) ∈ dn}
forall i ∈ Icurr do

Train π on i and update Vn
∆V :=

∑
i∈Icurr

|Vn(s0, ci)− Vn−1(s0, ci)|

S

G1 G3

G5G4

G2

(a) Gridworld (b) SPaCE Curricu-
lum

Figure 1: (a) Gridworld with instance start position (S)
and goals of all five instances (Gi). (b) Corresponding
curriculum. Rows indicate training iterations, columns state
evaluations. Colored cells comprise Icurr.

extended instead of simply shifting it to harder instances in
order to prevent forgetting previously learnt policies.

As an example, we consider a set of 5 Gridworld instances,
each set in a 3x3 grid, but with differing goal positions (see
Figure 1a). The state description contains an agent’s cur-
rent position and the number of steps the agent has taken
so far. The context information is simply the location of
the goal state. A reward of −1 will be given for each step
until it reaches the goal state. The agent can move in all
4 directions. It will always start in the upper left corner
and we allow for at most 10 steps. We use a small Dou-
bleDQN (van Hasselt et al., 2016; Fujita et al., 2019) (see
Appendix A.1) with V (st, ci) = maxaQ(st, ci, a). We set
κ = 1 to add one instance at a time when the difference
in value estimation falls below η = 10%. Figure 1b shows
how SPaCE constructs the curriculum in the first few train-

Figure 2: Mean train performance over 5 training episodes
on Gridworld for round robin and SPaCE. Result shown is
the mean over 10 random seeds with standard deviation.

ing episodes. As the self-paced agent’s value estimation
is initialized randomly, its initial difficulty estimations are
incorrect. Thus, this agent actually does not start training on
the easiest instance. After 5 iterations on single instances,
it can still transfer its performance onto the other instances
easily, however, as the training set is then extended to 2
instances until iteration 9 to and shortly after the complete
instance set after iteration 12. The performance reflects this,
as the agent is very quickly close to the optimal reward of
−0.2 (see Figure 2) when using SPaCE because the single
instances are very easy and the agent can transfer at least
parts of its policy between them. Clearly the agent is able
learn the single instances quickly, as shown by the SPaCE
trained agent, but iterating over the instances in a round
robin fashion makes it harder for the agent to learn. This is
demonstrated as the round robin agent does not converge
and is much less stable between runs.

5. Preliminary Experiments
We evaluated our approach on the contextual PointMass
environment described by Klink et al. (2020) as we are using
a similar approach to instance difficulty estimation.2 In this
environment, the agent maneuvers a point mass through a
goal in a two-dimensional space. The goal position, width
as well as the friction coefficient of the ground are given as
context and together make up the instance description.

We sampled train and test sets of 100 instances each from
a uniform distribution and evaluated the agent over 10 ran-
dom seeds to account for randomness. We train a PPO agent
(Schulman et al., 2017; Liang et al., 2018) and base our cur-
riculum generation on its value-based actor (see A.2). For
easier readability, all plots are smoothed over 10 iterations.

Figure 3 shows the comparison between SPaCE and round
robin, as a baseline, during training. While round robin
struggles to improve, SPaCE is quickly able to generate a
reward of about 6 out of 10 points per episode. In contrast
to this, round robin stays below a reward of 4 points. After
each training iteration, we evaluated the agent on the test set
in order to monitor generalization progress over time.

2Code available at: https://github.com/automl/SPaCE
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Figure 3: Mean reward per training iteration over 5 runs
each with standard deviation

Figure 4: Mean reward per episode on test set.

The results on the test set (see Figure 4) are similar to the
performance during training, with SPaCE outperforming
round robin by quite a large margin of at least 2 to 4 points at
all times. Obviously this agent, while being able to improve
at least a little bit during training, was not able to transfer
those improvements to the instance set as a whole on any
run. The SPaCE agent also does not reach the optimal
performance of 10, but comes much closer on both training
and test set. Furthermore, the performance between training
and test set does not differ very much for this agent. This
indicates that our agent actually succeeded in learning the
underlying instance distribution from our training set.

Considerations for Comparing SPDRL and SPaCE.
As we used the same environment and similar methods as
(Klink et al., 2020), we would like to comment on the differ-
ences between our SPaCE and their SPDRL. We used a PPO
agent for training, while SPDRL used TRPO. Both algo-
rithms, however, have been shown to behave very similarly
(Engstrom et al., 2020), nevertheless a possible confound-
ing factor. Our agent achieved its final performance range
very fast, hovering around 6 reward points after already 200
iterations. The SPDRL-TRPO agent took longer, about 400
iterations to reach the same reward and then continued to
improve to about 9 reward points by iteration 1 000. All
other methods they compared against stayed below 6 reward
points for the duration of training.

It is to be expected, that access to a distribution from which
to smoothly sample instances, as is the case in SPDRL,
would improve overall performance. We can see the lim-
itations of our fixed-size instance set in our agent’s test
performance on individual instances. While the curriculum
extends the instance set to the whole training set within 250

Figure 5: Examples of test instances our agent struggles to
generalize to.

iterations, there are test instances on which the agent never
performs well (see Figure 5) and even deteriorates over time.
For our agent to be able to perform as well as the SPDRL
agent, we would also have to be able to generalize to these
instances. As there is an initial performance spike, it does
not seem like these instances are inherently unsolvable for
our agent. More likely, they are simply not represented well
in the training set, see Appendix B. This is supported by
the performance decreasing over time (the agent forgetting
better policies for underrepresented instances in favor of
improving on the remaining instances). Therefore the stag-
nating performance on the test set as a whole for the later
half of training can be attributed at least in part to the limita-
tions imposed on us by our training set of only 100 instances.
As limited training data availability is a major considera-
tion for many practical applications, we plan on further
experiments that better quantify how much generalization
is influenced by different sized training sets compared to
unlimited instance sampling.

6. Conclusion
Self-Paced Context Evaluation (SPaCE) provides an adap-
tive curriculum learning method for problem settings con-
strained to a fixed set of training instances. Therefore we
can transfer the generalization improvements made by simu-
lation based self-paced learning approaches with an infinite
task distribution more broadly in practice. We have shown
that SPaCe outperforms round robin trained agents during
training and improves the capability to generalize over the
underlying instance distribution even without having direct
access to it. Further research could answer how an increase
in instance set size can mitigate the performance gap to
sample-based approaches and if we can derive performance
expectations for practical applications of RL with a limited
amount of instances wrt the amount of information available.
Furthermore, we might be able to use the value estimation
to further improve the training efficiency, for example by
clustering instances of similar difficulty and then limiting
the amount of training on very easy ones to a minimum.
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A. Algorithms & Hyperparameters
A.1. Gridworld

We used the ChainerRL DoubleDQN agent with a fully
connected discrete Q-function using one layer and 32 units.
As an optimizer we used Adam with a learning rate of 0.001
and a constant ε = 0.1 for exploration. We used a discount
factor of γ = 0.99. The agent had access to a prioritized
replay buffer with a capacity of 5 · 105 (much larger than
the number of training steps). As this is a minimal example
with very easy instances, we kept the minibatch size at 1 to
be able to see the results of every update. Q-values were
retrieved via the agent’s statistics.

A.2. PointMass RL model

Training for PointMass was done with Ray’s PPOTrainer
class and a wrapper for the environment to change to the
next training instance upon reset. We used the pytorch
version of the default model with the value-based critic
option enabled. To compute the average change in the value
function, after each iteration we called the model with the
initial observations for each instance in the current training
set and then queried the value function output. Difficulty
estimation was done in the same way, but for all training
instances.

B. PointMass Instance distribution
As mentioned in Section 5, we assume overall test perfor-
mance would improve if we had access to unlimited in-
stances. To support this, we show the train and test instance
set we used to train our SPaCE agent on the PointMass envi-
ronment in Figure 6. We see that all performances on which
the agent perform bad in testing are low friction instances
and on the fringes of our instance space.

Figure 6: Training and test instance distribution. Test in-
stances with mean performance of less than 4.5 are marked
red.

Figure 7 shows the friction specifically in relation to perfor-
mance. We can see that not only all instances with low test

Figure 7: Mean test performance over the whole training du-
ration in relation to instance friction. Highlighted instances
have mean test performance of lower than 4.5

performance are instances with a low friction coefficient, all
instances with low friction also have bad test performance.
As we have seen improvements on these instances during
training, we think this supports the idea that the lack of
more low friction instances in the training set made per-
formance improvement on these instances much harder to
achieve. This is another point we want to pursue in future
experiments.

C. Rewards on Different Scales
An implicit assumption about our method is that the reward
across instances is on a similar scale. The reason for this is
that we use the expected reward as a measure of difficulty.
There are reward functions for which this is not the case,
however, an a common example being the reward depend-
ing on the length of the solution (e.g. maze tasks). If the
objective is to finish a task very quickly but the context can
significantly prolong the task without impacting the pol-
icy, it is possible for two instances to have a very similar
policy but their different reward scales will prevent them
from being added to the curriculum around the same time.
Therefore the agent may not be able to exploit its knowl-
edge optimally and the curriculum is weaker for it. If the
length of the optimal policy is known, we could still scale
the rewards, of course. However, such prior knowledge is
not always available s.t. an a-priori scaling might not be
possible.

Assuming similar instances with different reward scales
exist, the curriculum would likely become less effective.
Knowledge transfer will still happen, but with more in-
stances having evaluations that are hard to compare to oth-
ers, the quality of the curriculum will be lower. The size
of this impact depends on the specific reward function and
given instance set. This assumption is true for all self-paced
methods and the solution is still an open question for future
work.
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