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Abstract
Dynamic Algorithm Configuration (DAC) aims to
dynamically control a target algorithm’s hyperpa-
rameters in order to improve its performance. Sev-
eral theoretical and empirical results have demon-
strated the benefits of dynamically controlling hy-
perparameters in domains like evolutionary com-
putation, AI Planning or deep learning. Replicat-
ing these results, as well as studying new methods
for DAC, however, is difficult since existing bench-
marks are often specialized and incompatible with
the same interfaces. To facilitate benchmarking and
thus research on DAC, we propose DACBench, a
benchmark library that seeks to collect and stan-
dardize existing DAC benchmarks from different
AI domains, as well as provide a template for new
ones. For the design of DACBench, we focused on
important desiderata, such as (i) flexibility, (ii) re-
producibility, (iii) extensibility and (iv) automatic
documentation and visualization. To show the po-
tential, broad applicability and challenges of DAC,
we explore how a set of six initial benchmarks com-
pare in several dimensions of difficulty.

1 Introduction
In the last years, algorithm configuration [Ansótegui et al.,
2009; Hutter et al., 2011; López-Ibáñez et al., 2016] and in
particular automated machine learning [Shahriari et al., 2016;
Hutter et al., 2019] offered automatic methods optimizing
the settings of hyperparameters to improve the performance
of algorithms. However, practitioners of different commu-
nities have already known for a while that static hyperpa-
rameter settings do not necessarily yield optimal performance
compared to dynamic hyperparameter policies [Senior et al.,
2013]. One way of formalizing dynamic adaptations of
hyperparameters is dynamic algorithm configuration (DAC)
[Biedenkapp et al., 2020]. DAC showed its promise by out-
performing other algorithm configuration approaches, e.g.,
choosing variants of CMA-ES [Vermetten et al., 2019] or dy-
namically adapting its step-size [Shala et al., 2020], dynam-
ically switching between heuristics in AI planning [Speck et
al., 2021], or learning learning rate schedules for computer
vision [Daniel et al., 2016].

These results, however, also revealed a challenge for the
further development of DAC. Compared to static algorithm
configuration [Ansótegui et al., 2009; Hutter et al., 2011;
López-Ibáñez et al., 2016], applying DAC also requires (i) the
definition of a configuration space to search in, (ii) instances
to optimize on and (iii) a reward signal defining the quality
of hyperparameter settings. However, the optimizer and the
algorithm to be optimized have to be integrated much closer
in DAC. The current state of the algorithm and the reward
function, for example, need to be queried by the optimizer
on a regular basis and the applied hyperparameter changes
need to be communicated to the algorithm. Therefore, cre-
ating reliable, reusable and easy-to-use DAC benchmarks is
often fairly hard with no existing standard thus far.

This disparity between benchmarks in addition to the dif-
ficulty in creating new ones presents a barrier of entry to the
field. Researchers not well versed in both target domain and
DAC may not be able to reproduce experiments or understand
the way benchmarks are modelled. This makes it hard for
pure domain experts to create a DAC benchmark for their do-
main, severely limiting the number of future benchmarks we
can expect to see. A lack of standardized benchmarks, in turn,
will slow the progress of DAC going forward as there is no re-
liable way to compare methods on a diverse set of problems.

To close this gap, we propose DACBench, a suite of stan-
dardized benchmarks1. On one hand, we integrate a diverse
set of AI algorithms from different domains, such as AI plan-
ning, deep learning and evolutionary computation. On the
other hand, we ensure that all benchmarks can be used with a
unified easy-to-use interface, that allows the application of a
multitude of different DAC approaches as well as the simple
addition of new benchmarks. This paper details the concepts
and ideas of DACBench, as well as insights from the bench-
marks themselves. Specifically, our contributions are:

1. We propose DACBench, a DAC benchmark suite with a
standardized interface and tools to ensure comparability
and reproducibility of results;

2. We discuss desiderata of creating DAC benchmarks and
how we took them into account in DACBench;

3. We propose a diverse set of DAC benchmarks from dif-
ferent domains showing the breadth of DAC’s potential,

1The project repository can be found at
https://github.com/automl/DACBench
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allowing future research to make strong claims with new
DAC methods;

4. We show that our DAC benchmarks cover different chal-
lenges in DAC application and research.

With this, we strive to lower the barrier of entrance into
DAC research and enable research that matters.

2 Related Work
DAC is a general way to formulate the problem of optimiz-
ing the performance of an algorithm by dynamically adapting
its hyperparameters, subsuming both algorithm configuration
(AC) [Hutter et al., 2017] and per-instance algorithm config-
uration (PIAC) [Ansótegui et al., 2016]. While AC methods
can achieve significant improvements over default configura-
tions PIAC algorithms have demonstrated that searching for a
configuration per instance can further improve performance.
In a similar way, DAC can navigate the over time changing
search landscape in addition to instance-specific variations.

Theoretically, this has been shown to be optimal for the
(1 + (λ, λ)) genetic algorithm [Doerr and Doerr, 2018], and
to enable exponential speedups compared to AC on a family
of AI Planning problems [Speck et al., 2021].

Empirically, we have seen dynamic hyperparameter sched-
ules outperform static settings in fields like Evolutionary
Computation [Shala et al., 2020], AI Planning [Speck et al.,
2021] and Deep Learning [Daniel et al., 2016]. In addition,
hyperheuristics [Ochoa et al., 2012] can also be seen as a
form of DAC. In this field, it has been shown that dynamic
heuristic selection outperforms static approaches on combi-
natorial optimization problems like Knapsack or Max-Cut
[Almutairi et al., 2016].

In the context of machine learning, dynamically adjust-
ing an algorithm’s hyperparameters can be seen as a form of
learning to learn where the goal is to learn algorithms or algo-
rithm components like loss functions [Houthooft et al., 2018],
exploration strategies [Gupta et al., 2018] or completely new
algorithms [Andrychowicz et al., 2016]. While DAC does not
attempt to replace algorithm components with learned ones,
the hyperparameter values of an algorithm are often instru-
mental in guiding its progress. In some cases they become
part of the algorithm. Dynamic step size adaption in ES us-
ing heuristics, for example, is very common, but can be re-
placed and outperformed by more specific DAC hyperparam-
eter policies [Shala et al., 2020].

In other meta-algorithmic areas, reliable and well engi-
neered benchmark libraries also facilitated research progress,
incl. ASLib [Bischl et al., 2016], ACLib [Hutter et al.,
2014], tabular NAS benchmarks (e.g. [Ying et al., 2019]) and
HPOlib [Eggensperger et al., 2013]. In particular, DACBench
is strongly inspired by HPOlib and OpenAI gym [Brockman
et al., 2016] which also provide a unified interface to bench-
marks. Although the hyflex framework [Ochoa et al., 2012]
addresses a similar meta-algorithmic problem, in DACBench,
we can model more complex problems (i.e., continuous and
mixed spaces instead of only categoricals), consider state fea-
tures of algorithms and cover more AI domains (not only
combinatorial problems).

Furthermore DACBench is designed to build upon exist-
ing benchmark libraries in target domains by integrating their
algorithm implementations. This includes well-established
benchmarks like COCO [Hansen et al., 2020] or IOHProfiler
[Doerr et al., 2018].

3 Formal Background on DAC
DAC aims at improving a target algorithm’s performance
through dynamic control of its hyperparameter settings
λ ∈ Λ. To this end, a DAC policy π queries state informa-
tion st ∈ S of the target algorithm at each time point t to set
a hyperparameter configuration: π : S → Λ. Given a starting
state s0 of the target algorithm, a maximal number of solving
steps T , a probability distribution p over a space of problem
instances i ∈ I , and a reward function ri : S × Λ → R de-
pending on the instance i at hand, the objective is to find a
policy maximizing the total return:∫

I
p(i)

T∑
t=0

ri(st, π(st)) di (1)

Following [Biedenkapp et al., 2020], one way of modelling
this task is as a contextual MDP MI = {Mi}i∼I [Hallak et
al., 2015], consisting of |I| MDPs. Each Mi represents one
target problem instance i with Mi = (S,A, Ti, ri). This for-
mulation assumes that all Mi share a common state space S ,
describing all possible algorithm states, as well as a single ac-
tion space A choosing from all possible hyperparameter con-
figurations Λ. The transition function Ti : S × A → S , cor-
responding to algorithm behaviour, and reward function ri,
however, vary between instances.

This formulation allows to apply different configuration
approaches on the same problem setting, e.g., algorithm con-
figuration by ignoring all state information (π : ∅ → Λ),
per-instance algorithm configuration by only taking the in-
stance into account (π : I → Λ) or a full DAC agent
(π : S × I → Λ) on the contextual MDP (information about
i ∈ I is typically directly reflected in s ∈ S). In view of how
close this DAC formulation is to reinforcement learning (RL),
in the remainder of the paper we will continue to refer to hy-
perparameter settings as actions and hyperparameter sched-
ules as policies. Nevertheless, we consider DAC as a general
problem that can be solved in different ways, incl. supervised
learning, reinforcement learning or even hand-designed poli-
cies, e.g., cosine annealing for learning rate adaption in deep
learning [Loshchilov and Hutter, 2017] or CSA for CMA-
ES [Chotard et al., 2012].

4 DACBench
With DACBench, we strive for an easy-to-use, standardized
and reproducible benchmark library that allows evaluating
DAC on several, diverse benchmarks. To this end, we will
first describe which components are needed to define a DAC
benchmark, see Figure 1, and then explain how we can make
use of it to ensure our design objectives.

4.1 Components of a DAC Benchmark
Inspired by the flexibility that the modelling as a cMDP al-
lows and the success of OpenAI’s gym environments, each
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DAC Optimizer

Configuration
Space Λ

Instance Space I

Policy
π : S → Λ

Target Algorithm
Ti : (st, λt) 7→ st+1

Instance i ∈ I

Reward
ri(st, λt)

solve
λt ∼ π(st)

st+1

update
π, i

Observations:
(st, rt, λt, st+1)

Figure 1: Interaction between optimizer, policy and all components of a DAC benchmark; latter in grey boxes.

DACBench benchmark is modelled along these lines, with
the following benchmark-specific design decisions.

Action Space A describes ways of modifying the current
configuration. In the simplest case, the action space directly
corresponds to the hyperparameter space, incl. all hyperpa-
rameter names and the corresponding ranges.

State Space S describes available information about the
target algorithm state. This can be enriched by context in-
formation about the instance at hand. We recommend that
it is (i) cheap-to-compute information that is (ii) available at
each step and (iii) measures the progress of the algorithm.

Target Algorithm with Transition Dynamics Ti implic-
itly defines which states st+1 are observed after hyperparam-
eter configuration λt is chosen in state st. It is important to
fix the target algorithm implementation (and all its dependen-
cies) to ensure that this is reproducible. An implicit design
decision of a benchmark here is how long an algorithm should
run before the next step description is returned.

Reward Function ri provides a scalar signal of how well
the algorithm can solve a given instance. It is an analogue to
the cost function in AC and PIAC and should be the optimiza-
tion target, e.g., prediction error, runtime or solution quality.

Instance Set I defines variants of a given problem that has
to be solved s.t. the learned policy is able to generalize to new,
but similar instances.2 To assess generalization performance,
a training and test set of instances is required. In addition,
instances can be described by instance features [Bischl et al.,
2016] which facilitates learning of per-instance policies.

This fine granular view on benchmarks allows us on one
hand to create a multitude of different benchmarks, poten-
tially with different characteristics. On the other hand, a
benchmark in DACBench is a specific instantiated combina-
tion of these components s.t. DACBench contributes to re-
producible results.

4.2 Practical Considerations & Desiderata
DACBench provides a framework to implement the design
decisions above with a focus on accessibility, reproducibility
and supporting further research on DAC.

Accessibility So far, applying a new DAC optimizer to a
target problem domain requires domain knowledge to be able
to interface with a potential algorithm. Comparing optimizers

2For simplicity, we only discuss the case of a set of training in-
stances. In general, DACBench also supports instance generators s.t.
the set of instances does not have to be fixed in advance.

across multiple benchmarks of varying characteristics often
requires re-implementing or adapting parts of the optimizers
to fit the different interfaces, hurting the consistency of the
comparison and taking a lot of time and effort.

Similarly, developing and providing new and interesting
benchmarks is challenging as, without a standardized inter-
face, there is little guidance on how to do so. Thus, domain
experts wanting to provide a DAC benchmark of a target algo-
rithm often construct their own interface, which can be time-
consuming even with a background in MDPs.

Providing a standardized interface would alleviate the is-
sues and facilitate moving DAC as a field forward. Therefore,
DACBench provides a common interface for benchmarks,
based on OpenAI’s gym API [Brockman et al., 2016], that
makes interaction with DAC optimizers as simple as possi-
ble. This interface is lightweight and intuitive to implement
for experts from different domains, encouraging collabora-
tion in the creation of new benchmarks and optimizers. It
also allows domain experts to modify existing benchmarks
with little effort and minimal knowledge of the base code to
create new and interesting variations of known benchmarks,
see Appendix C.

Reproducibility As discussed before, adapting an algo-
rithm for DAC can be challenging as there are many design
decisions involved. On one hand, to allow studies of new
DAC characteristics, we believe it is important to give re-
searchers the flexibility to adjust these components. There-
fore, we do not want to propose a framework that fixes too
many decision points as it could restrict important future re-
search. On the other hand, we believe there is a need for stan-
dardized benchmarks to facilitate comparing different meth-
ods as well as reproducing research results. For this purpose,
all design decisions of the original experiments should be re-
producible. To this end, DACBench includes a mechanism to
customize as many of these design decisions as possible, but
also to record them such that other researchers can reproduce
the experiments (for more details, see Appendix A).

Facilitating Further Research Lastly, DACBench sup-
ports researchers by providing resources needed to work on
DAC problems as well as thorough documentation of the de-
sign decisions of each benchmark. As existing benchmarks
are often not documented very well, working with them re-
quires thorough study of the code base. Instead, DACBench
provides all important details about individual benchmarks in
a concise manner through comprehensive documentation.

Furthermore, DACBench provides quality of life compo-
nents like structured logging and visualization that make
working with DACBench seamless. The logging system gives
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users the option to save a variety of details like the policies
or state information for later analysis. Further, the built-in
visualization tools make evaluating experiments easy (exam-
ples include Figures 3, 3 and 5) and can directly use the data
provided by the logging system.

These considerations contribute to driving open research
on DAC forward by ensuring easy reproducibility of experi-
ments, usability for a diverse audience and sharing of experi-
ment configurations. By adopting a simple yet modular inter-
face, we improve general accessibility to the field as well as
the ability to continuously evolve DAC benchmarks.

4.3 Six Initial Diverse DAC Benchmarks
We propose six initial benchmarks for DACBench from dif-
ferent domains and with different challenges (for in-depth de-
scriptions, see Appendix B). We believe these present a ver-
satile set of problems both for testing DAC methods across
diverse benchmarks and developing new approaches.

Sigmoid & Luby [Biedenkapp et al., 2020] are time se-
ries approximation tasks with no underlying target algorithm.
These artificial benchmarks run very quickly, their optimal
policies can be computed efficiently for all possible instances
(i.e. transformations of the functions themselves) and it is
easy to generate instance sets for a wide range of difficul-
ties. Therefore, Sigmoid and Luby are ideal for DAC devel-
opers, e.g. to verify that agents can learn the optimal policy
or slowly ramp up the instance heterogeneity in order to test
its generalization capabilities.

FastDownward [Helmert, 2006] is a state-of-the-art AI
Planner, which gives rise to a more complex benchmark. The
task here is to select the search heuristic at each step on
a specific problem family with two complementary heuris-
tics. This can be considered one of the easier benchmarks
even though significant performance gains on competition
domains are possible with four commonly used heuristics
[Speck et al., 2021]. The basic instance set we provide in-
cludes optimal policy information as an upper performance
bound.

CMA-ES [Hansen et al., 2003] is an evolutionary strat-
egy, where the DAC task is to adapt the algorithm’s steps
size [Shala et al., 2020] when solving BBOB functions. How-
ever, finding a good solution in this continuous space is po-
tentially harder than the discrete heuristic selection in Fast-
Downward. While optimal policies are unknown for this
benchmark, there is a strong established dynamic baseline in
CSA [Chotard et al., 2012].

ModEA includes an example of dynamic algorithm selec-
tion for variants of CMA-ES on BBOB functions [Vermetten
et al., 2019]. In contrast to the CMA-ES benchmark, a com-
bination of 11 EA elements with two to three options each
are chosen in each step; this combination makes up the final
algorithm. This multi-dimensional, large action space makes
the problem very complex. So we expect this to be a hard
benchmark, possibly too hard for current DAC approaches to
efficiently determine an effective DAC policy.

SGD-DL adapts the learning rate of a small neural net-
work learning a simple image classification task [Daniel et
al., 2016]. The small network size allows for efficient de-
velopment and benchmarking of new DAC approaches. By

(a)

(b)

Figure 2: Ranked comparison of difficulty dimensions in
DACBench benchmarks. Lower values correspond to easier char-
acteristics.

varying the instance (dataset-seed pairs) and the network ar-
chitecture, this benchmark nevertheless opens up ample pos-
sibility to grow ever harder as DAC advances.

5 Empirical Insights Gained from DACBench
In order to study our benchmarks, we discuss dimensions of
difficulty which are relevant to the DAC setting. To provide
insights into how our benchmarks behave in these dimen-
sions, we use static policies, known dynamic baselines and
random dynamic policies to explore their unique challenges.

5.1 Setup
To show how our benchmarks behave in practice, we mainly
use the static and random policies built into DACBench and,
where possible, make use of optimal policies. All of them
were run for 10 seeds with at most 1 000 steps on each in-
stance. For benchmarks with a discrete action space, static
policies cover all the actions. The two benchmarks with con-
tinuous action spaces, CMA-ES and SGD-DL were run with
50 static actions each, distributed uniformly over the action
space. For details on the hardware used, refer to Appendix D.

5.2 Coverage of Difficulty Dimensions
Similar to Biedenkapp [2020], we identified six core chal-
lenges of learning dynamic configuration policies to charac-
terize our benchmarks. For comparison’s sake, we define a
scale for each attribute and measure these on our benchmarks.
These dimensions of difficulty are: (i) State and (ii) action
space size increase the difficulty of the problem by varying
information content, requiring the agent to learn what state
information is relevant and which regions in the action space
are useful. (iii) Policy heterogenity quantifies how successful
different policies are across all instances. (iv) Reward qual-
ity refers to the information content of the given reward sig-
nal. (v) Noise can disturb the training process through noisy
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Figure 3: Left: Performance of 5 static ModEA policies with 95% confidence interval. The legend shows which components of ModEA
were used. Right: Comparison of average performance of static FastDownward policies with 95% confidence interval.

transitions or rewards. Lastly, (vi) dynamicity shows how fre-
quently the action should be changed, i.e. how complex well-
performing policies need to be. See Appendix E for details.

Figure 2 shows how the benchmarks compare with respect
to these dimensions of difficulty. While the reward quality is
not fully covered, we cover all other dimensions well, with
at least a very, moderately and not especially difficult bench-
mark in each. Additionally, all DACBench benchmarks show
a different profile. The data shows that Luby could be consid-
ered the easiest of the six, with little noise or policy hetero-
geneity and a relatively low dynamicity score, requiring only
infrequent action changes. SGD-DL’s footprint looks simi-
lar, though its continuous action space makes for a difficulty
spike in that category. While Sigmoid’s reward function ob-
scures quite a bit of information, it is not very difficult in the
other dimensions. FastDownward on the other hand leads the
dynamicity dimension by far, showing a need for more ac-
tive control. It is also fairly challenging with regard to noise
and policy heterogeneity. CMA-ES is even more difficult in
these, while also having the largest state space. A more in-
formative reward and lower dynamicity contrast it and other
benchmarks. ModEA’s difficulty, on the other hand, seems
similar except for the challenge of a continuous state space.

While this shows that our benchmark set covers all of our
dimensions of difficulty with the exception of reward qual-
ity fairly well, we will continue to explore the dimensions of
noise, policy heterogeneity and dynamicity in greater detail
in order to give a more detailed impression of how these di-
mensions are expressed.

5.3 Degree of Randomness
To show how randomness is expressed in our benchmarks, we
investigate its effects on FastDownward and ModEA.

We quantified randomness by using the standard devia-
tion of the cumulative reward between different seeds for the
same actions, each repeated 10 times. ModEA was one of
the benchmarks that had a very high relative standard devi-
ation and thus a very high noise score, see Figure 3. While
static policies from different parts of the action space vary
in performance, their confidence intervals grow much larger
the worse they perform. This is to be expected, as policies
with a high reward have found EA components that quickly
find the optimal solution of the black-box function at hand.
If the resulting EA cannot find a solution quickly, the indi-
viduals in each generation will have very different proposed
solutions, thus resulting in unstable performance. So even
though ModEA contains quite a bit of noise, the noise is het-
eroscedastic, i.e., it is not evenly distributed across the policy

space, providing an additional challenge.
FastDownward, on the other hand, also has a high rating

in the noise category, but the way its noise is distributed is
quite different, see Figure 3. W.r.t. the average performance
of both static policies, the 95% confidence interval is up to
twice as large as the performance value itself. In contrast to
ModEA, the noise is large but likely homoscedastic.

5.4 Effect of Instances
To investigate the effect instances have on our benchmarks,
we examine CMA-ES, which showed the highest policy het-
erogeneity above, and Sigmoid, for which we can compute
the optimal policy. CMA-ES and ModEA both operate on
instance sets comprised of different function classes between
which we can clearly see very different behaviour. The Schaf-
fers function (see Figure 4 left) illustrates that the hand-
designed CSA is indeed a good dynamic policy; it outper-
forms all other static and random policies.

In contrast, CSA performs much worse on the Ellipsoid
function (Figure 4 middle). Using the probability estimation
proposed by [Shala et al., 2020] based on the Wilcoxon rank
sum test, CSA’s probability of outperforming any given static
policy is 74.6% overall; also shown on a per-instance level
in the algorithm footprint [Smith-Miles et al., 2014] in Fig-
ure 4. While this shows that CSA’s dynamic control policy is
preferred on most of CMA-ES instance space, there are also
regions that require a different approach, underlining the im-
portance of instance dependent methods.

On the Sigmoid benchmark we see that performance dif-
ferences between instances persist even for the optimal policy
(see Figure 5 left). While it performs very well on some in-
stances, this is far from the case for all of them. Indeed, while
it is possible to gain the best possible reward of 10 on some
instances, there is an almost even distribution of rewards be-
tween the maximum and minimum cumulative reward.

Overall, different instances can have a significant influence
on the overall performance, both in terms of which policies
are successful on them and how well an agent can do.

5.5 Is Dynamic Better than Static?
Even though we have empirical evidence of DAC agents sur-
passing static baselines for all of our benchmarks [Daniel et
al., 2016; Vermetten et al., 2019; Biedenkapp et al., 2020;
Shala et al., 2020; Speck et al., 2021], we analyse and com-
pare the performance of dynamic and static policies on our
benchmarks. This way we can estimate the difficulty both in
finding a good dynamic policy that surpasses a simple ran-
dom one but also the difficulty of outperforming the static
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Figure 4: Policy evaluation of CMA benchmark on Schaffers (left) and Ellipsoid (middle) functions (with 3 best and worst static policies).
Right: Algorithm footprint t-SNE plot of CMA-ES instances showing where CSA outperforms all static policies.

Figure 5: Left: Best possible reward for each sigmoid instance. Middle: Static and dynamic policies on Luby. The reward is 0 if the agent
guesses the correct sequence element, −1 otherwise. Right: Static (best and worst 3) and dynamic policies on SGD-DL with λ = 10−x. The
reward here is the validation loss (negative log-likelihood).

policies. Insights into the relationship between static and dy-
namic policies can highlight characteristics of a benchmark,
give upper and lower performance bounds and show the effect
size we can expect from DAC approaches in the future.

Our evaluation clearly shows that the benchmarks have a
very different sensitivity to dynamic policies. In Luby (Fig-
ure 5 middle) we can see that the most common elements of
the Luby sequence, elements one and two, outperform the dy-
namic random policy. As 50% of the Luby sequence consist
of the first element and 25% of the second, this is the expected
behaviour. Therefore it also makes sense that the optimal pol-
icy outperforms all other policies. The random policy does
not perform very well, showing that there is a lot of room to
improve over it and subsequently over the static policies.

Similarly, the random policy of SGD-DL outperforms
some of the worst static policies on average, but does very
poorly compared to them on many occasions (see Figure 5
right). Improving over the best static policies here will there-
fore be much harder for a DAC agent. This is also an exam-
ple of the fact that dynamically adapting hyperparameters can
outperform static settings, as [Daniel et al., 2016] showed for
this setting, but the region of well-performing dynamic poli-
cies seem to be much smaller than for Luby above. This is
the reason for the benchmark’s low dynamicity rating. Unlike
e.g. FastDownward, which favors frequent action changes re-
gardless of their quality, SGD-DL requires a more subtle ap-
proach with more consistency and carefully selected actions.

Therefore, we believe dynamicity will play a large role
in how DAC methods should approach benchmarks. While
choosing a new action each step for SGD-DL can of course
be learned successfully over time, it is a much harder task
than Luby. Methods keeping actions for a number of steps at
a time may have better success here [Vermetten et al., 2019].

6 Conclusion
We propose DACBench, a standardized benchmark suite for
dynamic algorithm configuration (DAC). With it, we pro-
vide a framework to configure DAC benchmarks that both
enables reproducibility and easy modifications, ensuring that
DACBench can help evolve DAC benchmarks further. For
example, we plan to extend the FastDownward benchmark
beyond single domains and include existing instance features
from e.g. Exploratory Landscape Analysis (ELA) for CMA-
ES and ModEA. Furthermore, DACBench is easily extend-
able and we will add new benchmarks, developed by us and
the community. As an incentive for researchers to tackle
some of the most important difficulties in solving DAC, we
provide challenges for several dimensions of hardness. In or-
der to assist in developing these new approaches, we also in-
clude tools for tracking important metrics and visualization,
making DACBench very easy to use without knowledge of
the target domains. Overall, we believe DACBench will make
DAC more accessible to interested researchers, make exist-
ing DAC approaches more easily comparable and provide a
direction for research into new methods. For future work, we
plan to build surrogate benchmarks, similar to [Eggensperger
et al., 2018] for AC and [Siems et al., 2020] for NAS, to en-
able DAC benchmarking with minimal computational over-
head and minimized CO2 footprint.
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L. Perez Caceres, M. Birattari, and T. Stützle. The irace package:
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