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Abstract

Since its proposal over a decade ago, LAMA has been con-
sidered one of the best-performing satisficing classical plan-
ners. Its key component is heuristic search with multiple open
lists, each using a different heuristic function to order states.
Even with a very simple, ad-hoc policy for open list selec-
tion, LAMA achieves state-of-the-art results. In this paper, we
propose to use dynamic algorithm configuration to learn such
policies in a principled and data-driven manner. On the learn-
ing side, we show how to train a reinforcement learning agent
over several heterogeneous environments, aiming at zero-shot
generalization to new related domains. On the planning side,
our experimental results show that the trained policies often
reach the performance of LAMA, and sometimes even per-
form better. Furthermore, our analysis of different policies
shows that prioritizing states reached via preferred operators
is crucial, explaining the strong performance of LAMA.

Introduction
Domain-independent classical planning is the problem of
finding a sequence of (deterministic) actions that lead from
a given initial situation of the world to a state satisfying
the given goal specification. LAMA (Richter and Westphal
2010) is one of the most successful planning systems for
satisficing planning, where finding a solution quickly is pri-
oritized over finding a cost-optimal solution. LAMA uses (i)
greedy best-first search (Pearl 1984) with deferred heuristic
evaluation, also called lazy greedy search (Helmert 2006;
Richter and Helmert 2009), and with (ii) multiple heuris-
tics in an alternating scheme (Röger and Helmert 2010).
Additionally, it prioritizes expanding states with (iii) pre-
ferred operators of the heuristics using boosting (Richter
and Helmert 2009). To do so, LAMA follows a simple
ad-hoc policy for selecting an open list for expansion: al-
ternate between all open lists, unless the expansion of a
state reached via a preferred operator improved the heuristic
value, in which case alternating is restricted to preferred op-
erator open lists for the next 1000 expansions. While this
policy for open list selection works well for many plan-
ning instances from the International Planning Competitions
(IPCs), its strengths and weaknesses are not well under-
stood.

In this paper, we shed light on why LAMA’s policy works
well and whether it can be learned in a principled and data-

driven way using machine learning techniques. Previous ap-
plication of machine learning techniques in planning mainly
used meta-algorithmic approaches, such as algorithm selec-
tion (Rice 1976; Xu et al. 2008) and algorithm configura-
tion (Hutter et al. 2009; Kadioglu et al. 2010), for improv-
ing planners (e.g., Gerevini, Saetti, and Vallati 2009; Fawcett
et al. 2011; Seipp et al. 2012; Fawcett et al. 2014; Seipp et al.
2015; Cenamor, de la Rosa, and Fernández 2016; Sievers
et al. 2019; Ma et al. 2020). These approaches, however, do
not allow interleaving learning and algorithm execution. Go-
moluch et al. (2020) instead used the cross-entropy method
to train search policies which dynamically decide which
type of search algorithm to use in a given state. Biedenkapp
et al. (2020) introduced a general meta-algorithmic frame-
work for interleaving learning and execution called dynamic
algorithm configuration (DAC). Most recently, Speck et al.
(2021) used DAC to train domain-dependent policies for se-
lecting which heuristic to use when, deciding which state to
expand next in an eager greedy best-first search.

In this work, we generalize the DAC framework to learn
domain-independent policies for open list selection in lazy
greedy search with preferred operators, thus allowing our
policies to generalize to new unseen domains. To this end,
we extend the framework to incorporate task-specific fea-
tures which allow training a reinforcement learning agent
over several heterogeneous environments (i.e., planning
tasks from different domains), aiming at zero-shot gener-
alization to related domains. In an experimental study us-
ing six IPC domains, we show that our learned policies
reduce the required number of node expansions compared
to baseline policies and LAMA’s boosting policy in sev-
eral domains and that they often approach the performance
of domain-dependent policies. We analyze the learned poli-
cies in detail and show that prioritizing states reached via
preferred operators (in particular those of the FF heuristic;
Hoffmann and Nebel, 2001) is crucial, thus explaining the
strong performance of LAMA’s policy for combining multi-
ple open lists.

Background

We begin by providing the necessary concepts and back-
ground on both DAC and classical planning.



Dynamic Algorithm Configuration
Dynamic algorithm configuration (DAC; Biedenkapp et al.
2020) is a meta-algorithmic approach which uses informa-
tion about the internal behaviour of an algorithm and infor-
mation about the instance it is run on to change the config-
uration of the algorithm during its execution. Both types of
information can be expressed through so-called features. As
the information about the internal behaviour of an algorithm
typically changes at every iteration, we refer to such fea-
tures as dynamic features. For example, the minimal heuris-
tic value changes frequently throughout the execution of a
planner and it can give information about the progress of
the planner. In contrast, information about the instance at
hand, such as the instance size, typically remains unchanged
throughout execution of an algorithm. We refer to features
encoding this type of information as instance features.

Let A be an algorithm and I be a set of instances on
which A should be configured using DAC. The DAC state
s̃it of A at step t ∈ N0 when solving instance i ∈ I is
described by numerical values consisting of both types of
features. Let S̃ be the set of DAC states and Θ̃ be the con-
figuration space of A. A DAC policy π̃ : S̃ → Θ̃ maps each
DAC state s̃it ∈ S̃ to a configuration θ̃ ∈ Θ̃. Let r̃ be a re-
ward function which maps a DAC policy π̃ and an instance
i ∈ I to the performance of A using π̃ on i. The goal of
DAC is to find a DAC policy π̃∗ which optimizes the reward
on I: π̃∗ ∈ arg maxπ̃∈Π̃ Ei∼I [r̃(π̃, i)].

Classical Planning and Greedy Search
A planning task (also called planning instance) provides a
description of the world via an initial state, a goal specifi-
cation and a set of actions (also called operators) describing
the dynamics of the world. Solving a planning task implies
finding a sequence of actions, called plan or solution, that
lead from the initial state to a state satisfying the goal speci-
fication, called a goal state. We assume that all actions cost
1. The cost of a plan is therefore equal to its length. We con-
sider satisficing planning, where the objective is to find a
short plan, but not necessarily a shortest plan.

A commonly used solution technique for satisficing plan-
ning is heuristic search, in particular variants of greedy
best-first search (Pearl 1984). We consider greedy best-first
search with multiple heuristics and deferred heuristic evalu-
ation (Richter and Helmert 2009; Röger and Helmert 2010),
which we refer to as greedy search in the following. Greedy
search maintains a finite set of priority queues, called open
lists, On = {O1, . . . , On}. Each open list Oi is associ-
ated with a heuristic hi which estimates the cheapest cost
of reaching a goal state from a given state. The expansion of
a state s results in a set of successor states which are added
to all open lists together with the heuristic estimate of their
parent state s. Only when a state is removed from open list
Oi, it is evaluated with heuristic hi. This deferred heuristic
evaluation attempts to reduce the number of heuristic eval-
uations, which can be beneficial if the branching factor is
large (Helmert 2006). Greedy search starts by expanding the
initial state and then repeatedly selects an open list Oi for
expanding the next state until finding a goal state.

Clearly, there are two design choices here: which heuris-
tics (respectively open lists) to use and which one to select in
each search iteration. Resolving the first choice, we consider
the two heuristics which form the backbone of the state-
of-the-art satisficing planner LAMA (Richter and Westphal
2010): the FF heuristic hff (Hoffmann and Nebel 2001)
and the landmark count heuristic hlmc (Richter, Helmert,
and Westphal 2008). Both heuristics can determine pre-
ferred operators (Hoffmann and Nebel 2001; Richter and
Helmert 2009) as a side-product of their computation. Pre-
ferred operators are operators deemed to make progress to-
wards a goal state. For each heuristic, greedy search using
preferred operators maintains an additional preferred oper-
ator open list which contains the subset of states reached
via preferred operators of the heuristic. Thus, LAMA uses
four open lists O4, associated with the heuristics H =
{hff , h

p
ff , hlmc, h

p
lmc}.

It remains to resolve the second choice, i.e., determin-
ing a policy for open list selection which defines the next
state to expand in each iteration of greedy search. Röger and
Helmert (2010) introduced the idea of switching between
open lists in a round-robin manner (rr) to use each heuris-
tic function equally often. LAMA improved upon rr by de-
viating from it whenever evaluating a state reached via a
preferred operator leads to an improved heuristic value: in
this case, all preferred operator open lists are boosted, i.e.,
they receive priority over the others for the next 1000 expan-
sions. Priorities are accumulated if during the priority phase,
another preferred state leads to heuristic improvement. Re-
cently, Speck et al. (2021) categorized different types of
policies for heuristic selection and showed that using DAC
to learn policies per domain generalizes these policies. Since
they only investigated heuristic selection rather than open
list selection, their design space did not include preferred
operator queues and thus cannot be used to learn LAMA-
like policies.

Learning Domain-Independent Policies
In this work, we use DAC to train domain-independent poli-
cies for open list selection of a planner using lazy greedy
search with multiple heuristics and preferred operators. Prior
approaches to learning DAC policies are typically based on
deep reinforcement learning (RL). For example, Speck et al.
(2021) use deep RL to train domain-dependent policies for
heuristic selection of a planner using lazy greedy search. The
common assumption in deep RL is that an RL agent only in-
teracts with a single environment. However, in our case, this
assumption does not hold: to obtain domain independence,
we need to train across many planning instances from differ-
ent domains, i.e., related but heterogeneous environments.
Even though interest in RL agents that are capable of gener-
alizing and solving multiple related environments is increas-
ing (see, e.g., a survey by Kirk et al. 2021), to the best of
our knowledge there exist only few approaches which tackle
the problem of consolidating instance features with dynamic
features. For example, Cobbe et al. (2020) encode instance-
specific information directly in an image state (such as a dif-
ferent background for a new level). Zhang et al. (2021) use
the instance ID and Eimer et al. (2021a) use a flattened rep-



resentation of a maze which they simply concatenate with
dynamic DAC state features. The few features considered
in prior works provide perfect information, i.e., they allow
to perfectly distinguish between instances. We are the first
to tackle the task of learning general RL policies in settings
where perfect instance features are not readily available and
study how to incorporate many imperfect features.

We follow the idea of combining instance with dynamic
features. We extend the approach by Speck et al. (2021) by
incorporating instance features and show how to use deep
RL to learn domain-independent policies. In this section, we
describe how we instantiate the DAC framework described
in the previous section: we define the configuration space,
the reward function, dynamic features as well as instance
features which make up the DAC state. Finally, we describe
the planner and the instances we use for training.

Configuration Space. We use the four open lists of
LAMA as configuration space: Θ̃ = O4 = {O1, . . . , O4}
associated with the heuristics H = {hff , h

p
ff , hlmc, h

p
lmc}.

Since planning states are always pushed into all regular (and
possibly preferred) open lists, an open list can contain a
closed state s when s was already popped from another
queue and expanded. Thus, a DAC agent might have to re-
peatedly communicate with the planning algorithm until it
finally finds a valid planning state to expand. This could
lead to large communication overheads without any actual
progress in the search. To mitigate this issue we pop plan-
ning states from the selected open list until finding a non-
closed state.

Reward Function. The reward function is a crucial part of
the learning pipeline as it defines which policies are prefer-
able over others. In our scenario, we aim at learning policies
that minimize the number of node expansions when find-
ing a plan. We define the reward function r̃ of a policy π̃
on instance i as the sum of rewards r̃it(s̃

i
t) obtained in each

DAC state s̃it during execution of π̃ on i, i.e., r̃ =
∑
t r̃
i
t(s̃

i
t).

Since the DAC agent maximizes the reward and we want to
minimize the number of steps (i.e., expansions), we define
r̃it(s̃

i
t) = −1 for all i and all t; this rewards reaching a goal

state faster.

Dynamic Features. State features define the DAC state
of the planner. We use the same dynamic state features as
Speck et al. (2021):
maxh: maximum h value for each open list;
minh: minimum h value for each open list;
µh: average h value for each open list;
σ2
h: variance of the h values for each open list;

#h: number of entries for each open list
Instead of using the raw feature values, we compute the dif-
ference between the last and current time step (t − 1 and t)
for each feature. This allows us to encode the progress that
has been made by expanding a node from one of the open
lists.

instance icontrol of O ∈ Θ̃

DAC-policy π̃ planner A

select open list Ot+1
k

reward r̃it

DAC-state s̃it

feature
generatorpreprocessing

II

Figure 1: Schematic representation of the interaction of a
DAC policy π̃ with an algorithmAwhen adapting its param-
eter O at every time step t while solving instance i. We ex-
plicitly include instance features to enable learning domain-
independent policies.

Instance Features. We also include instance features, as
information about the task or the domain at hand can help
to distinguish between domains and could prove useful in
learning domain-independent DAC policies. To this end we
use the handcrafted planning features collected by Fawcett
et al. (2014). These features include information about the
PDDL description of the task (e.g., the number of action
schemas), information about the translation to a SAS+ plan-
ning task (Bäckström and Nebel 1995) (e.g., the number of
state variables), and information from short probing runs of
the Fast Downward Planning System (Helmert 2006) (e.g.,
the number of evaluated states). Note that instance features
remain constant throughout the run of the planning system,
thus we do not compute the difference between time steps
for these features. Since it is an open question in RL how
to best combine instance and dynamic features, we discuss
multiple ways to do so in the next section.

Overall Learning Pipeline To conclude this section, Fig-
ure 1 depicts the interaction of a learned policy for open list
selection π̃ with a planner A. Before running A on instance
i, we generate instance features for instance i, possibly pre-
processing them further before passing them to the DAC
policy. During execution, A follows π̃ by selecting the k-th
open list Otk for expansion at time step t. After expansion,
it informs the DAC policy about the resulting DAC state s̃it
and the incurred reward r̃it(s̃

i
t) = −1. This feedback loop

allows the agent to learn which action in which state results
in the largest reward and to adapt the policy accordingly.

Combining Instance and Dynamic Features
With little prior work on combining instance and dynamic
features in DAC (which we try to solve with deep RL) we
need to carefully consider how to incorporate them to be
able to learn domain-independent open list selection poli-
cies. This is especially important as the planning commu-
nity has focused mostly on adapting parameters once for a
given instance and not repeatedly while solving it. As a re-
sult, in the planning literature knows many instance features
and only a few dynamic features. In our work, we consider
305 instance features (Fawcett et al. 2014) and 5 dynamic



features per open list (Speck et al. 2021). Working with such
a large set of instance features poses a challenge that has not
been tackled before in DAC or similar deep RL settings. We
discuss four different methods for combining instance and
dynamic features for learning DAC policies in our setting.

Using Only Dynamic Features. The simplest approach to
learning DAC policies across domains is to only use the dy-
namic features while training across a set of different plan-
ning domains. Using only dynamic features is already suffi-
cient to learn DAC policies for individual domains that can
outperform the theoretical best algorithm selector for this
domain (Speck et al. 2021). This intra-domain generaliza-
tion gives evidence that dynamic features allow us to distin-
guish between instances from the same domain. Still, it is
not clear whether using dynamic features to learn policies is
sufficient to enable generalization across multiple domains.

Concatenating Instance and Dynamic Features. When
using instance features while training across instances, it is
straightforward to concatenate instance and dynamic fea-
tures. However, this way of combining both types of fea-
tures abstracts away the type of feature an RL agent is pre-
sented with. For different types of learning processes this
could pose a challenge, because by design deep RL agents
expect that every feature is dynamic and changes frequently
between DAC states. The concatenation of both types of fea-
tures provides more information to the learner than the ex-
clusive use of dynamic features, but may lead to overfitting
based on the overproportionally large number of instance
features part of the DAC state.

Learning Separate Representations. To mitigate the
shortcomings of the previous two approaches, we propose
to use neural network architectures that have separate input
layers for the two sources of features but combine them fur-
ther on in the second to last layer. The underlying idea of
separating the inputs of the dynamic and instance features is
to reduce overfitting to only one feature type and to allow
learning representations based only on the dynamic or in-
stance features. Further, this separation allows us to embed
the high-dimensional inputs in a lower-dimensional space.
These embeddings can then be concatenated further down
in the architecture to learn the policy based on these repre-
sentations. By learning the embeddings and policies at the
same time, it is possible to balance these components better.

Decoupling Instance and Dynamic Features. While in-
stance features can be helpful for distinguishing between do-
mains, by design they are not helpful to understand the in-
ternal dynamics of the algorithm. Thus, it is reasonable to
decouple learning either type of feature. In classical meta-
algorithmic approaches, such as algorithm selection, princi-
ple component analysis (PCA) is commonly used (see, e.g.,
Lindauer et al. 2015). With the representation learning ca-
pability of deep neural networks we can learn embeddings
that are useful for specific tasks, rather than using a hand-
designed approach such as PCA. To this end, we propose to

treat learning the embedding of instance features as a sep-
arate task. The instance features can be used to train a sep-
arate small neural network to classify the domain or pre-
dict which heuristic is most likely to perform well. Thus,
the output of such a network contains a lot of information
about the instance at hand and can be used together with dy-
namic information. This decoupling approach has the ben-
efit of simplifying the learning approach. This is because
the instance feature embeddings are learned in a simple su-
pervised learning manner based only on static information,
whereas the dynamic policy is trained with dynamic infor-
mation and uses the instance embedding without having to
learn it online.

Experimental Design
Our experiments are divided into several parts. We begin by
examining scenarios with a single heuristic h ∈ {hff , hlmc}
and two open lists, one associated with h and one with hp.
This allows us to assess if our approach based on DAC is ca-
pable of learning meaningful boosting policies without hav-
ing to additionally learn which heuristic is more capable of
guiding the search at each step. We further use these sce-
narios to study the effect of learning domain-independent
compared to domain-dependent DAC policies. In a final ex-
periment, we use the full configuration space which also al-
lows us to cover LAMA’s policy for open list selection. We
analyze the learned policies and shed some light onto the
strengths of LAMA’s policy.

Training Setup
We use the Fast Downward planning system (Helmert 2006)
which contains an implementation of LAMA and thus all
components we need. We implement the DAC framework
for learning policies in Python and use the socket commu-
nication protocol by Speck et al. (2021) for communicating
between the planning system (implemented in C++) and the
DAC policy. For training DAC policies, we use DACBench
(Eimer et al. 2021b) which provides a simple DAC interface.

To avoid following particularly bad policies that might
require many node expansions during training we impose
a cutoff on the number of node expansions. If the cutoff
value is too small, policies might overfit to easier instances,
whereas a too large cutoff value might result in very slow
training. As a compromise, we use a cutoff of 50 000 node
expansions during training. In all experiments, we use the
described set of dynamic features (consisting of min, max,
average, variance, number of entries) for each open list. In
the domain-independent case, we further consider the set of
305 instance features (Fawcett et al. 2014) that allow us to
distinguish between the individual instances and domains.
Finally, we evaluate the four proposed methods for combin-
ing dynamic and instance features in our experiments.

Training Pipelines
Following Biedenkapp et al. (2020), we use ε-greedy deep
Q-learning. Similarly, we linearly decay ε over 5 × 105

steps from 1.0 to 0.1. All networks are trained using ADAM
(Kingma and Ba 2015) with the default hyperparameters of



CHAINER v7.7.0 (Tokui et al. 2019) for 2 × 106 training
steps. We repeat all training runs five times and report the
average performance.

When learning DAC policies purely form dynamic fea-
tures, we use the same double DQN (van Hasselt, Guez,
and Silver 2016) architecture as Speck et al. (2021). This
architecture consists of 2 hidden layers with 75 hidden units
each. In the domain-independent setting we dub this method
no-F. When using instance features by concatenating them
to the dynamic feature vector, we keep the same architec-
ture. Only the input layer is widened to use both dynamic
and instance features. We dub this method raw-F.

When learning an embedding online, we adapt the base
architecture to allow for two separate input streams, be-
fore merging them further down in the architecture. We per-
formed a small search over a set of architectures to deter-
mine a suitable architecture. This search considered three
different architectures that differed only slightly in the num-
ber of hidden units and layers for the input stream of the
instance features. Our resulting architecture first processes
the instance features over two hidden layers. The dynamic
features are processed in a single hidden layer. The outputs
of both streams are then concatenated and processed in a fi-
nal hidden layer. All hidden layers have 75 units each. In the
following, we refer to this method as embed.

To decouple learning of instance and dynamic features,
we first train a 2-layer neural network with [100, 50] hidden
units to classify which of two heuristics (hff , hlmc) results
in a lower number of node expansions on the training in-
stances. We use the soft-max output of the final layer of this
network and concatenate it with the dynamic feature input of
the DAC policy net, which again uses the same architecture
as when only considering dynamic features with a slightly
wider input layer. Thus, we get a cheap-to-train, highly-
informative but low-dimensional embedding. Note that the
classifier network is not further trained while learning the
dynamic policy. Thus, counter to the previous method, the
DAC policy is trained with a fixed embedding for the in-
stance features. We dub this method dc (domain classifier).

Evaluation Protocol
In our evaluation protocol we consider training both in a
domain-dependent as well as a domain-independent fash-
ion. For the former, we train policies on a set of instances
from only a single domain and in the latter we train poli-
cies across instances from multiple domains. To keep CPU
computation manageable, we consider instances from six
diverse IPC domains (BARMAN, BLOCKSWORLD, CHILD-
SNACK, DRIVERLOG, FLOORTILE, and VISITALL) gener-
ated by Autoscale (Torralba, Seipp, and Sievers 2021). The
considered set of instances is split into disjoint training, val-
idation and test sets. We use the training sets exclusively to
update the weights of the policy network, while we use the
validation sets to estimate generalization to unseen instances
from the same domains. The test is used only to determine
the final performance. When evaluating test performance,
we report the performance of the best policy found on the
validation set. This choice is motivated by the fact that we
are interested in the quality of found policies. We also con-

sider a leave-one-domain-out setting where we train on five
domains and report the performance on the unseen sixth do-
main. For the final evaluation, we remove the cutoff used
during training and use a runtime limit of 5 minutes a 4 GiB
memory limit. We use Lab (Seipp et al. 2017) for running all
experiments on a compute cluster with nodes equipped with
two Intel Xeon Gold 6242 32-core CPUs, 20 MB cache and
188 GB shared RAM running Ubuntu 20.04 LTS 64 bit. As
our goal is to minimize the number of node expansions, we
report the expansion score (Richter and Helmert 2009)

score(ne) =
ln(min(max(ne, 102), 106))− ln(106)

ln(102)− ln(106)

where ne is the number of node expansions required to solve
a particular instance by a given policy. Intuitively, unsolved
instances or solved instances with more than 106 node ex-
pansions give zero points, while instances solved with less
than or equal to 102 node expansion give one point. Solved
instances with node expansions between these extremes give
a score that is logarithmically interpolated between 0 and 1.
We sum up the scores for instances from the same domain
to get per-domain scores.

Baselines
We consider four static baselines that perform a greedy
search with a single open list associated with one of the
heuristics in H = {hff , h

p
ff , hlmc, h

p
lmc}. We consider two

baselines that follow simple dynamic policies for open list
selection: rand randomly selects one of the open lists
from O and rr switches between the open lists of O in a
round-robin manner. Finally, we consider the boosting pol-
icy (boost) of LAMA as a baseline that boosts the open
lists of preferred operators. We use this baseline when we
consider only one heuristic with and without preferred op-
erators, which yields two open lists, and when we consider
all four open lists, which then corresponds to the LAMA
planner. Note that LAMA is considered one of the most suc-
cessful satisficing planners, making it a very strong baseline.

Experiments and Analyses
We report results of our experiments in three scenarios: us-
ing a single heuristic, using both heuristics, and using the
leave-one-domain-out setting. Finally, we analyze LAMA’s
policy in comparison to those trained with our approaches.

Single Heuristic Scenarios
In the simplest scenario, we consider learning policies for
open list selection between two open lists associated with
one heuristic. Domain-dependent policies are trained per do-
main, and domain-independent ones are trained across all
six domains. We report only the training results as the vali-
dation and test results closely resemble those of the training
set. In the LMC scenario, the policies learned by the DAC
agents select between the two open lists associated with the
landmark count heuristic without and with preferred opera-
tors. Table 1 shows the expansion scores. In this scenario,
mostly static policies perform strongest, as the open list us-
ing preferred operators should rarely be boosted. In fact, in



Static Dynamic Domain- Domain-Independent DAC

Domain hlmc hp
lmc rand rr boost Dependent DAC no-F raw-F embed dc

BARMAN (18) 2.70 0.00 3.21 3.59 3.59 3.60 ±0.05 3.60 ±0.05 2.70 ±0.00 2.77 ±0.00 3.62 ±0.06
BLOCKSWORLD (20) 10.64 0.00 6.79 6.80 6.82 11.02 ±0.69 9.63 ±0.23 10.63 ±0.04 10.64 ±0.00 7.14 ±0.25
CHILDSNACK (13) 2.80 0.00 3.00 2.98 2.77 3.00 ±0.22 2.85 ±0.17 2.81 ±0.04 2.81 ±0.03 2.79 ±0.17
DRIVERLOG (21) 16.27 0.00 17.30 17.48 10.62 17.77 ±0.34 16.29 ±1.25 16.18 ±0.21 16.27 ±0.00 14.62 ±2.40
FLOORTILE (3) 0.87 0.00 0.97 0.92 0.97 0.93 ±0.03 0.96 ±0.03 0.87 ±0.00 0.87 ±0.00 0.96 ±0.03
VISITALL (30) 24.66 0.00 23.35 23.15 14.03 24.91 ±0.39 23.25 ±1.94 24.02 ±1.48 24.67 ±0.00 22.24 ±2.53

Table 1: Training results for the LMC scenario. For all DAC methods we report the mean and standard deviation.

Static Dynamic Domain- Domain-Independent DAC

Domain hff hp
ff rand rr boost Dependent DAC no-F raw-F embed dc

BARMAN (18) 4.97 14.58 6.32 6.32 14.31 12.20 ±2.85 14.04 ±0.57 14.58 ±0.00 14.57 ±0.03 14.32 ±0.42
BLOCKSWORLD (20) 6.08 16.99 7.67 7.55 16.95 16.97 ±0.04 16.55 ±0.82 16.99 ±0.00 16.95 ±0.09 16.89 ±0.20
CHILDSNACK (13) 4.40 10.66 5.50 5.45 10.42 10.67 ±0.13 10.22 ±1.07 10.57 ±0.20 10.36 ±0.74 9.95 ±1.23
DRIVERLOG (21) 16.00 12.28 17.53 17.64 16.03 18.21 ±0.66 17.78 ±0.97 13.17 ±0.48 14.04 ±0.01 17.00 ±2.00
FLOORTILE (3) 1.46 1.85 1.60 1.60 1.77 1.82 ±0.07 1.68 ±0.19 1.75 ±0.14 1.80 ±0.11 1.73 ±0.14
VISITALL (30) 15.15 15.94 15.28 15.32 15.93 15.81 ±0.20 15.85 ±0.15 15.92 ±0.04 15.94 ±0.00 15.81 ±0.28

Table 2: Training results for the FF scenario. For all DAC methods we report the mean and standard deviation.

this scenario, the classical boosting approach with a boost
value of 1000 performs much worse than only choosing the
open list not using preferred operators. In domains such as
BARMAN, CHILDSNACK and FLOORTILE, roughly equal us-
age of both open lists results in well performing policies,
slightly outperforming the static selection of only hlmc.

Learning policies in a domain-dependent fashion, i.e., tai-
lored to only the domain at hand, our DAC approach is able
to find better policies in most domains. Note that in the
domain-dependent case we train policies for each domain
and report the score in the same domain without evaluating
transfer here. Thus, the domain-dependent results in essence
show the results of an oracle selector over DAC policies,
to give an indication if larger improvements could be gained
over the baselines. In contrast, learning domain-independent
policies has the advantage that we can find well-performing
policies that can adapt to the domain at hand and thus poten-
tially result in good performance in all domains.

All DAC policies outperform the boosting baseline in
nearly all domains and get close to, or outperform the best
baseline per domain. Surprisingly, using no features at all al-
ready performs well in this scenario. This can be attributed
to the similarity of the well-performing policies, with em-
phasis on the open list without preferred operators and only
sporadic usage of the preferred-operator open list.

In the FF scenario, we consider the FF heuristic rather
than the landmark count heuristic. Table 2 shows results.
This scenario is nearly the perfect opposite to the LMC sce-
nario as it is nearly always better to use the preferred op-
erator open list. In contrast to the LMC scenario though,
only in the DRIVERLOG domain does frequent switching (as
done by rand and rr) between the open lists work well.
Interestingly, in this scenario, always choosing hp

ff works so
well that even in the domain-dependent case we rarely find
better policies. This confirms the common assumption that
preferred operators are crucial for the performance of the
FF heuristic. Additionally, these results show that consider-
ing only states reached via operators that FF considers pre-
ferred is enough for some domains. This is quite surprising

since pruning non-preferred successors renders the search
incomplete in general. When the domain-independent DAC
approaches result in equal performance to the baseline, DAC
has learned policies that almost always choose hp

ff .

Multi-Heuristic Scenario
We extend the previous scenarios to contain both hff and
hlmc along with their preferred operator open lists, resulting
in four open lists. Thus we cover and can potentially learn
LAMA’s hand-crafted policy for open list selection. This
scenario is much more varied than the first two as individual
static policies are not dominant (see Tables 3 and 4). In BAR-
MAN and CHILDSNACK, it is sufficient to always select hp

ff ,
but LAMA’s policy comes close to the same performance.
Similarly in VISITALL, only selecting hlmc is a strong base-
line but LAMA’s policy comes close. By design, LAMA’s
policy makes use of both heuristics and all four open lists.
Thus, in cases where static selection already performs well
LAMA does not fall far behind as its boosting mechanism
will still select the well performing open list predominantly.

On the training set (Table 3), domain-independent DAC
can find better policies on BLOCKSWORLD and FLOOR-
TILE, whereas domain-dependent DAC finds better policies
on DRIVERLOG and VISITALL. As shown by the general-
ization to the test set (Table 4), DAC policies do not gen-
eralize well in the DRIVERLOG domain, likely due to indi-
vidual instances in DRIVERLOG requiring various different
policies to be solved best. Furthermore, training domain-
independent policies tends to perform better when adding
instance specific information, confirming our previously dis-
cussed approach. Only on the DRIVERLOG domain learning
policies without using instance specific information is bet-
ter. While concatenating instance features directly with dy-
namic features (raw-F) works well enough on the training
set, it has the worst generalization to the test set out of the
three domain-independent methods using instance features
(raw-F, dc & embed). Using a small classifier network
(dc) has a similar performance to learning an embedding
during training (embed) both on the training ant test sets.



Static Dynamic Domain- Domain-Independent DAC

Domain hff hp
ff hlmc hp

lmc rand rr LAMA Dependent DAC no-F raw-F embed dc

BARMAN (18) 4.97 14.58 2.70 0.00 6.30 6.27 14.42 14.31 ±0.05 12.57 ±2.47 12.51 ±4.44 14.00 ±1.39 13.39 ±1.68
BLOCKSWORLD (20) 6.08 16.99 10.64 0.00 13.14 12.91 16.96 16.49 ±0.04 15.82 ±1.85 16.99 ±0.77 17.04 ±0.78 16.33 ±1.68
CHILDSNACK (13) 4.40 10.66 2.80 0.00 7.28 7.33 10.37 10.50 ±0.06 9.23 ±1.87 9.67 ±1.54 9.57 ±1.99 10.02 ±1.45
DRIVERLOG (21) 16.00 12.28 16.27 0.00 18.15 18.27 16.10 18.53 ±0.03 18.34 ±0.75 14.80 ±0.88 15.98 ±1.16 17.25 ±1.90
FLOORTILE (3) 1.46 1.85 0.87 0.00 1.74 1.63 1.78 1.83 ±0.01 1.66 ±0.15 1.88 ±0.11 1.78 ±0.18 1.82 ±0.23
VISITALL (30) 15.15 15.94 24.66 0.00 24.32 24.20 24.81 25.38 ±0.02 23.55 ±3.24 20.37 ±5.14 23.61 ±3.42 24.56 ±1.42

Table 3: Training results for the LAMA scenario. For all DAC methods we report the mean and standard deviation.

Static Dynamic Domain- Domain-Independent DAC

Domain hff hp
ff hlmc hp

lmc rand rr LAMA Dependent DAC no-F raw-F embed dc

BARMAN (18) 1.93 9.98 0.85 0.00 4.08 3.95 10.20 9.98 9.26 8.35 8.39 9.54
BLOCKSWORLD (18) 3.36 10.70 4.47 0.00 6.20 6.42 10.90 9.17 10.33 10.08 9.81 10.08
CHILDSNACK (18) 1.66 9.21 0.74 0.00 3.79 3.82 9.08 7.41 8.19 8.56 2.66 3.31
DRIVERLOG (18) 7.41 5.62 7.41 0.00 10.56 10.56 8.01 9.43 6.59 6.42 8.81 5.63
FLOORTILE (18) 0.85 0.86 0.00 0.00 1.01 0.55 0.57 1.39 0.91 1.39 0.74 0.44
VISITALL (18) 6.50 6.94 12.24 0.00 11.63 11.64 11.86 12.37 12.20 12.02 12.31 11.88

Table 4: Test results for the LAMA scenario. For all DAC methods we report the score of the best seed on the validation set.

However, by separately learning the embedding with a clas-
sifier, learning the policy can be done with a simpler and
thus more efficient architecture.

Generalizing to Unseen Domains
A question that arises is how well do the policies learned
with the presented methods generalize to other domains. To
this end, in the domain-dependent case we transfer the poli-
cies trained on a single domain to all other domains. We
report the score normalized with respect to the performance
of the domain-dependent policies in a confusion matrix (see
Figure 2). This allows us to see if we can recover the same
performance with a policy trained on a different domain as
when training and evaluating in the same domain. Overall,
policies that yield more robust performance are considered
better than policies that yield high scores in single domains
they were trained on but are not transferable to other do-
mains that were not seen during training.

For the LMC scenario (see Figure 2a), we see that gen-
eralization to the BARMAN domain is most difficult. In
general, however, the found policies in this scenario are
so similar (as all successful policies need to mostly ig-
nore hp

lmc) that they are easily transferable to other do-
mains. Policies are far less transferable in the more com-
plex FF scenario (see Figure 2b), as not all domains re-
quire mostly static behaviour. While policies that are not
trained on VISITALL result in nearly the same performance
as when training on VISITALL, policies are far less trans-
ferable to BLOCKSWORLD or CHILDSNACK. Interestingly,
policies trained on the DRIVERLOG domain are least trans-
ferable, resulting in strong performance drops on BAR-
MAN, BLOCKSWORLD and CHILDSNACK. With the in-
creased complexity of the LAMA scenario (see Figure 2c),
the transfer of policies yields much worse results than poli-
cies trained on the respective domain. Still, CHILDSNACK
is most difficult to transfer to, whereas policies trained
on DRIVERLOG are least likely to transfer well. These re-
sults indicate that well-performing domain-dependent poli-
cies are tailored to the domain at hand and are not always

directly transferable.
To analyze how transferable domain-independent policies

are, we train each method in a leave-one-domain-out man-
ner. We normalize the performance of the so found policies
with respect to those trained on instances from all six do-
mains. This indicates how well we can recover the perfor-
mance on domains that were not observed during training.
Figure 3 shows a confusion matrix analogously to Figure 2.

As in the domain-dependent case, policies for the LMC
scenario are highly transferable as most often the preferred
operator open list should be ignored (see Figure 3a). In the
FF scenario, policies can be transferred much better than
with the domain-dependent counterparts (see Figure 3b). On
CHILDSNACK, we observe a drop in performance for all but
the embed approach. In general both dc and embed ap-
proaches generalize better than raw-F and no-F. Finally,
in the most complex scenario, the LAMA scenario, we again
see slightly more pronounced drops in performance, but not
as drastic as in the domain-dependent case (see Figure 3c).
For example, the performance in VISITALL drops when it is
excluded from the training set. This can be explained due to
this being the only domain requiring strong usage of hlmc.
Excluding it from the training set does not enable methods
to learn when this open list is useful. Interestingly, CHILD-
SNACK again proves to be a domain that is difficult to gen-
eralize to. Most notably though, in this scenario the perfor-
mance drops most strongly when no instance features are
used. These results gives further evidence that DAC policies
trained in a domain-independent fashion are more transfer-
able than their domain-dependent counterparts. Further, it
seems to be important to train policies across domains to
achieve domain-independence. Still, the use of instance fea-
tures can help in learning general policies, especially true
when used to learn low-dimensional embeddings.

Understanding LAMA
From the data presented in the prior sections we can see that
LAMA’s policy exhibits some form of adaptation to the do-
main at hand as it can recover similar performance to the
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Figure 2: Transferability of policies learned on a single domain. Values are normalized with respect to the performance gained
on the same domain. Values closer to zero indicate worse performance of the learned policy on that domain. Values larger or
equal to 1 indicates better or equal performance compared to the policy trained and evaluated in the same domain.
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Figure 3: Transferability of policies learned on five domains to the left out domain. Values are normalized with respect to the
performance achieved when training on all domains. Values closer to zero indicate worse performance. Values larger or equal
to 1 indicates better or equal performance.

single best static policies in domains where they are espe-
cially strong. Moreover, we have seen that the exclusive use
of the open list associated with hp

ff is already a strong pol-
icy. Based on these observations, it is likely that LAMA’s
boosting policy, which frequently boosts the hp

ff open list, is
largely responsible for LAMA’s success.

The use of DAC allows us to find DAC policies that are ca-
pable of outperforming LAMA on some instances and some
domains. Comparing the found policies with that of LAMA
provides insights that are not possible with classical meta-
algorithmic approaches. As DAC allows to traverse the pos-
sible space of policies it can potentially find many differ-
ently behaving but well-performing policies which we can
compare to that of LAMA. For all policies, we compare the
frequency of usage of the individual open lists with those
of the LAMA policy. Our findings show that, whenever a
DAC policy performs worse than LAMA on a particular in-
stance, then the DAC policy under-uses the hp

lmc open list.
Out of the remaining three open lists, the DAC policy tends
to use hlmc slightly more on average than LAMA. For the
two FF-related open lists, there is no clear trend. In cases
where DAC finds policies that outperforms LAMA, LAMA
over-uses the hp

lmc open list. Out of the remaining three open
lists, successful DAC policies on average put more empha-
size on hp

ff than LAMA. Thus, while LAMA’s open list se-
lection policy is robust and somewhat adapts to the domain

at hand through boosting, it is not an optimal policy for all
domains and instances, and equal boosting of both preferred
operator open lists seems to not be the best strategy. Notably,
while the frequency of hp

lmc varies, all successful policies
make strong use of hp

ff .

Conclusions
We investigated the use of DAC for learning policies for
open list selection in a configuration space that includes
LAMA, one of the most successful satisficing planners. If
one is interested in finding the best policy (in terms of per-
formance) for a specific domain, domain-dependent DAC is
able to find policies that outperform even LAMA. However,
these policies are tailored to this domain and fail to gener-
alize to others. Whenever more robust policies are required,
domain-independent DAC is capable of generalizing even to
unseen domains to a certain degree, but might not produce
policies being perfectly tailored to individual domains. Fur-
thermore, DAC not only allows one to find strong policies,
but also aids as a tool for gaining insights into AI planning
algorithms, as the found policies highlight which open lists
are important. Finally, when using RL as a solution approach
to DAC, it is not trivial to include imperfect instance infor-
mation during learning. Simply concatenating state features
(as previously done) does not perform as well as using more
specialized methods such as dc or embed.
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