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Abstract

Despite having achieved spectacular milestones in an array of important real-
world applications, most Reinforcement Learning (RL) methods are very brit-
tle concerning their hyperparameters. Notwithstanding the crucial importance of
setting the hyperparameters in training state-of-the-art agents, the task of hyper-
parameter optimization (HPO) in RL is understudied. In this paper, we propose
a novel gray-box Bayesian Optimization technique for HPO in RL, that enriches
Gaussian Processes with reward curve estimations based on generalized logistic
functions. We thus not only reason about the performance of learning algorithms,
transferring information across configurations but also about epochs of the learn-
ing algorithm. In a very large-scale experimental protocol, comprising 5 popular
RL methods (DDPG, A2C, PPO, SAC, TD3), 22 environments (OpenAI Gym:
Mujoco, Atari, Classic Control), and 7 HPO baselines, we demonstrate that our
method significantly outperforms current HPO practices in RL.

1 Introduction

While Reinforcement Learning (RL) has celebrated amazing successes in many applications [1–
5], it remains very brittle [6, 7]. The successes of RL are achieved by leading experts in the field
with many years of expertise in the “art” of RL, but the field does not yet provide a technology
that broadly yields successes off the shelf. A crucial hindrance for both broader impact and faster
progress in research is that an RL algorithm that has been well-tuned for one problem does not
necessarily work for another one; especially, optimal hyperparameters are environment-specific and
must be carefully tuned in order to yield strong performance.

Despite the crucial importance of strong hyperparameter settings in RL [6, 8–10], the field of hyper-
parameter optimization (HPO) for RL is understudied. The field is largely dominated by manual tun-
ing, computationally expensive hyperparameter sweeps, or population-based training which trains
many agents in parallel that exchange hyperparameters and states [11]1. While these methods are
feasible for large industrial research labs, they are costly, substantially increase the CO2 footprint of
artificial intelligence research [12], and make it very hard for smaller industrial and academic labs
to partake in RL research. In this paper, we address this gap, developing a computationally efficient
yet robust HPO method for RL.

The method we propose exploits the fact that reward curves tend to have similar shapes. As a result,
future rewards an agent collects with a given hyperparameter setting can be predicted quite well
based on initial rewards, providing a computationally cheap mechanism to compare hyperparame-
ter settings against each other. We combine this insight in a novel gray-box Bayesian optimization
method that includes a parametric reward curve extrapolation layer in a neural network for comput-
ing a Gaussian process kernel.

1For a more in-depth discussion of related work we refer to Appendix A
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In a large-scale empirical evaluation using 5 popular RL methods (DDPG, A2C, PPO, SAC, TD3),
22 environments (OpenAI Gym: Mujoco, Atari, Classic Control), and 7 HPO baselines, we demon-
strate that our resulting method, the Reward-Curve Gaussian Process (RCGP), yields state-of-the-art
performance across the board. In summary, our contributions are as follows:

• We introduce a novel method for extrapolating initial reward curves of RL agents with
given hyperparameters based on partial learning curves with different hyperparameters.

• We introduce RCGP, a novel Bayesian optimization method that exploits such predictions
to allocate more budget to the most promising hyperparameter settings.

• We carry out the most comprehensive experimental analysis of HPO for RL we are aware
of to date (including 5 popular RL agents, 22 environments and 8 methods), concluding
that RGCP sets a new state of the art for optimizing RL hyperparameters in low compute
budgets.

To ensure reproducibility (another issue in modern RL) and broad use of RGCP, all our code is
open-sourced at https://github.com/releaunifreiburg/RCGP.git.

2 Method Preliminaries

Hyperparameter Optimization (HPO) focuses on discovering the best hyperparameter configura-
tion λ ∈ Λ of a Machine Learning method. Gray-box HPO refers to the concept of cheaper and
approximate evaluations of the performance of hyperparameter configurations. For example, we
can approximately evaluate the final reward of the configurations of a deep RL method system after
every epoch of stochastic gradient descent (gray-box evaluations) [13, 14], instead of waiting for the
full convergence (black-box evaluations). The reward after a budget b (i.e. after b epochs) is defined
as R (λ, b) : Λ×N→ R+. To address the noisieness of reward curves of RL algorithms we smooth
the curves using a best-so-far transformation. We average rewards based on windows of h training
steps, and select the highest reward at any past window, as:

R(max) (λ, b) = max
0≤b′<b−h

1

h

h∑
i=1

R(λ, b′ + i). (1)

From now on, we refer to the smoothed R(max) as the reward R. In addition, let us define
the cost (e.g., wall-clock time) of evaluating a configuration for a specific budget as C (λ, b) :
Λ × N → R+. We define the history of N evaluated configurations and the respective bud-
get as H(K) = {(λ1, b1, R (λ1, b1)) , . . . , (λK , bK , R (λK , bK))}. A gray-box algorithm A is a
policy that recommends the next configuration to evaluate and its budget as (λK+1, bK+1) :=

A
(
H(K)

)
where A : (Λ× N× R+)

K → Λ × N. Gray-box HPO formally focuses on poli-
cies A that are sequentially executed for as many steps (denoted K) as needed to reach a total
budget Ω. The best policy discovers the configuration with the largest reward at any budget, as
argmaxA maxi=1,...,K R

(
(λi+1, bi+1) := A

(
H(i)

))
s.t. K = maxj∈N+

Ω >
∑j

i=1 C (λi, bi).

Bayesian optimization (BO) is a very popular HPO policy that sequentially recommends hyper-
parameters to evaluate. BO operates in sequences of two steps: by (i) fitting a probabilistic regres-
sion model to approximate the observed performances R(λ, b) of the evaluated configurations and
budgets in H; and (ii) applying an acquisition to select the next configuration to evaluate.

In the first step, we train Gaussian Processes [15] to approximate the observed performances (i.e.
R(λ, b) ≈ GP (λ, b; θ)) by finding the optimal GP parameters θ∗ via MLE:

θ∗ (H) := argmax
θ

E(λ,b,R(λ,b))∼pH
log (R(λ, b) | λ, b ; θ) (2)

At the second step, we use an acquisition function α : Λ × N+ → R+ that scores how ”well” a
previously unevaluated configuration might perform at a future budget, based on the estimation of
the GP fitted above. Typical acquisition functions, such as the Expected Improvement [15] recom-
mend configurations with a high predicted performance (high GP posterior mean), but also explore
configurations where the GP is uncertain on their performance (high posterior variance). A naive
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gray-box BO can be formalized as a special HPO policy, based on a fitted GP with parameters θ∗

from a history of i evaluations H(i), that recommends the (i+ 1)-th configuration as:

(λi+1, bi+1) := ABO
(
θ∗
(
H(i)

))
:= argmax

λ∈Λ,b∈N+

α
(
λ, b ; θ∗

(
H(i)

))
(3)

3 Proposed Method

A multi-fidelity Gaussian Process can be modeled as a standard GP with an augmented feature vec-
tor z := [λ, b] ∈ Λ× N [16–18]. We present the preliminaries of our method in Appendix 2. From
the history of evaluations H(K) we define the training features zi = [λi, bi] and their respective
targets yi = R (λi, bi) for i ∈ {1, . . . ,K}. A kernel function measures the similarity of features as
k (zi, zj) : (Λ× N)2 → R+. The aim of the GP is to estimate the posterior distribution of the un-
known target of a new observed test instance z∗ = [λ∗, b∗]. The covariance matrix between training
features’ pairs is defined as K (z, z) = [k(zi, zj)]∀i,j . Similarly, the covariance between test-to-
training features is K (z∗, z) = [k(z∗, zi)]∀i, and the test-to-test one as K (z∗, z∗) = k(z∗, z∗).
Ultimately, the posterior prediction of the unknown test target is:

µ (z∗) = K (z∗, z)
(
K (z, z) + σ2

yI
)−1

y, (4)

σ2(z∗) = K (z∗, z∗)−K (z∗, z)
(
K (z, z) + σ2

yI
)−1

K (z∗, z)
T
. (5)

It was recently pointed out that a sigmoidal relationship exists between the reward curve of Rein-
forcement Learning methods and the optimization budget [16]. In this paper, we model the reward
curve R (λ, b) of configuration λ at budget b as a generalized logistic function (Richard’s curve) with
five coefficients [19]. Furthermore, we do not naively fit one sigmoid function on each reward curve
for each hyperparameter configuration. Instead, we propose to condition the sigmoid coefficients
on the hyperparameter configurations within a multi-layer perceptron g : Λ → R5 with weights w
(where g(λ, b;w)i represents the i-th output neuron) as:

R̂ (λ, b;w) = g (λ;w)1 +
g (λ;w)2 − g (λ;w)1(

1 + g (λ;w)3 e
−g(λ;w)4b

)1/g(λ;w)5
. (6)

In this paper, we propose a novel GP that exploits the pattern of the reward curve of the RL algorithm,
by introducing the sigmoidal reward curve of (Equation 6). We augment the feature space with the
estimation of the reward curve as [λ, b]→ [λ, b, R̂ (λ, b;w)]. Therefore, the kernel becomes:

kour ([λi, bi], [λj , bj ] ; w) = k
(
[λi, bi, R̂ (λi, bi;w)], [λj , bj , R̂ (λj , bj ;w)]

)
. (7)

We train the parameters w using the established machinery of kernel learning for GPs [20] and
then use this GP for gray-box HPO [16, 17]. It is worth pointing out that the acquisition func-
tion of Bayesian optimization (BO) queries the GP’s estimation of the final performance of an
unevaluated configuration. For brevity, we omit the basics of BO here, however, we refer the in-
terested reader to Snoek et al. [15]. In this context, the reward curve model of Equation 6 offers
crucial information in estimating the full (bmax) performance of an unknown configuration (i.e.,
[λ, bmax] → [λ, bmax, R̂ (λ, bmax;w)]), and enables the acquisition function of the BO algorithm (ex-
pected improvement at convergence) to discover performant hyper-parameter configurations.

Our novel gray-box HPO method is summarized by the pseudocode of Algorithm 1 in Appendix B.

4 Experimental Protocol

We focus on evaluating the performance of our proposed method, RCGP (Reward-Curve GP), for
optimizing the hyperparameters of five popular model-free RL algorithms: PPO [21], A2C [22],

3



0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

1

2

3

Ra
nk

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

1

2

3

4

0 1 2 3 4
Timesteps 1e6

1

2

3

GP RS BOHB DEHB SMAC RCGP PB2 PBT

Figure 1: Rank comparison of (i) RS, GP, and RCGP; (ii) PBT, PB2, and RCGP, and (iii) BOHB,
SMAC, DEHB, and RCGP for the PPO search space in the Atari environments.

DDPG [23], SAC [24], and TD3 [25]. In total, we consider 22 distinct Gym [26] environments,
grouped into the Atari [27], Classic Control, and Mujoco [28] categories. We denote the search
spaces for the hyperparameters of each RL algorithm, and the full list of environments and their
respective action space types in Appendix C.

We evaluated static hyperparameter optimization (HPO) methods by querying AutoRL-Bench2,
which is a tabular benchmark for AutoRL that contains reward curves for three different ran-
dom seeds belonging to runs of RL algorithms with every possible combination of hyperparame-
ter values from the search spaces shown in Table 1 in Appendix C. For the dynamic HPO meth-
ods (PBT [11] and PB2 [29], details in Appendix C.1), we ran our own evaluations of the RL
pipelines. In every environment, we set the budget for all baselines to the run-time equivalent
of 10 full training procedures, based on the expected run-time figures of AutoRL-Bench. Each
training procedure consists of 106 steps on the training environment. All methods are evaluated
for three seeds in each environment and RL algorithm. The plots show the mean and standard
deviations of the relative ranks of all methods, with the training timesteps in the x-axis. Further-
more, we included the code for evaluating the performance of all the HPO methods in our GitHub
repo https://anonymous.4open.science/r/RCGP-65CC.

5 Research Hypotheses and Experimental Results

Hypothesis 1: Using the reward curve information helps in discovering efficient hyperparameters
for model-free RL algorithms in the low budget regime.

We compare the performance of RCGP to RS and GP, as standard HPO baselines which do not
utilize learning curve information. We evaluate RS and GP for 10 full RL algorithm runs. The
leftmost plot in Figure 1 shows the performance comparison in terms of rank per timesteps in the
training environment for the PPO search space in the Atari environments. Initially, RS, GP, and
RCGP start the search with the same 4 hyperparameter configurations sampled uniformly at random.
RCGP queries the learning curve of evaluation returns of these initial configurations for the smallest
budget of 105 steps on the training environment. RS, and GP, being black-box optimization methods,
query AutoRL-Bench for final evaluation returns after 106 training steps, for both the initial and
subsequently suggested configurations.

Figures 4 to 6 (Appendix D) show the results on all the (search space, environment) combinations. In
all the cases, RCGP outperforms RS and GP within the wall-clock time budget of our experimental
protocol. We conclude that gray-box HPO is more efficient than black-box HPO in RL.

Hypothesis 2: RCGP outperforms state-of-the-art multi-fidelity HPO methods in optimizing the
hyperparameters of model-free RL algorithms.

We compare the performance of RCGP to BOHB, SMAC and DEHB, as state-of-the-art multi-
fidelity HPO baselines. We evaluate each method for the equivalent time of 10 full RL algorithm
runs. Initially, all four methods start the search with the same 4 hyperparameter configurations

2https://github.com/releaunifreiburg/AutoRL-Bench
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sampled uniformly at random. The middle plot in Figure 1 shows the performance comparison
on the PPO search space for the Atari environments. Figures 7 to 9 (Appendix D) include the
experiments on the PPO, A2C, DDPG, SAC, and TD3 search spaces for the Atari, Classic Control,
and Mujoco environments. In all experiments, our method RCGP on average outperforms BOHB,
SMAC, and DEHB in the low budget regime of up to 10 full function evaluations. We therefore
conclude that RCGP sets the state-of-the-art in gray-box HPO for RL.

Hypothesis 3: Our method outperforms PBT and PB2, the state-of-the-art HPO in RL.

In this experiment, we compare our method RCGP to PBT and PB2, to assess the efficiency of our
gray-box HPO technique against state-of-the-art dynamic HPO methods. For ensuring a fair com-
parison, we evaluated PB2 and PBT using the recommended population size of 4 [29], leading to
a budget equivalence of 4 full training routines. In addition, all three optimization methods use an
initial design consisting of the same 4 hyperparameter configurations sampled uniformly at random.
The rightmost plot in Figure 1 shows the performance comparison on the PPO search space for the
Atari environments. The associated experiments of Figures 10 to 12 (Appendix D), include experi-
ments on all the (environment, algorithm) combinations. The plots show RCGP clearly outperforms
PBT and PB2 in the low budget regime of up to 4 full function evaluations. Although PBT and PB2
are able to dynamically configure the hyperparameters of an RL algorithm, they require extensive
parallel resources, and thus perform sub-optimally on the low budget regime.

6 Conclusion

Reinforcement Learning (RL) is one of the premier research sub-areas of Machine Learning, due to
the impressive achievements of modern RL methods. Unfortunately, the performance of trained RL
agents depends heavily on the choice of the methods’ hyperparameters. In this paper we introduced
a novel gray-box HPO method that fits Gaussian Processes (GP) to partially-observed reward curves.
Our GP variant fuses hyperparameter configurations, budget information and reward curve models
based on generalized logistic functions. In a large-scale experimental protocol we demonstrated
that our proposed method significantly advances the state-of-the-art for HPO in RL. Especially, we
largely outperform evolutionary search HPO methods in RL (PBT and PB2), as well as existing
gray-box HPO techniques.
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In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Proceedings
of the 24th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’11), pages 2546–2554. Curran Associates, 2011.

[54] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf,
R. Sass, and F. Hutter. SMAC3: A versatile bayesian optimization package for Hyperparameter
Optimization. Journal of Machine Learning Research (JMLR) – MLOSS, 23(54):1–9, 2022.

[55] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A research
platform for distributed model selection and training. arXiv:1807.05118 [cs.LG], 2018.

9

iclr.cc
iclr.cc


A Related Work

RL training pipelines are complex and often brittle [6, 7, 10]. This makes RL difficult to use for novel
applications. To mitigate this, automated reinforcement learning [AutoRL; 31] aims to alleviate a
human practitioner from the tedious and error prone task of manually setting up the RL pipeline.

While there exist different approaches to automate the choice of algorithm, architecture [32] or even
environment components [33], in this work we focus on hyperparameter optimization [HPO; 34, 35]
for RL. There exist various approaches in the literature of HPO for RL [see, e.g., 36, 8, 37, 38, for a
detailed survey we refer to Parker-Holder et al. [31]]. Due to the non-stationarity of RL training, in
recent years, most applications of hyperparameter optimization for RL have focused on dynamically
adapting hyperparameters throughout the run. For example, population based training [PBT; 11] and
variants thereof [see, e.g., 39, 29] have found more wide-spread use in the community. This style
of HPO uses a population of agents to optimize their hyperparameters while training. Parts of the
population are used to explore different hyperparameter settings while the rest are kept to exploit the
so far best performing configurations. While this has proven a successful HPO method, a drawback
of population based methods is that they come with an increased compute cost due to needing to
maintain a population of parallel agents. Thus, most extensions of PBT, such as PB2 [29], aim at
reducing the required population size. Still, to guarantee sufficient exploration, larger populations
might be required which makes such methods hard to use with small compute budgets.

In the field of automated machine learning [AutoML; 30], multi-fidelity optimization has gained
popularity to reduce the cost of the optimization procedure. Such methods [see, e.g., 40–45] lever-
age lower fidelities, such as dataset subsets, lower number of epochs or low numbers of repetitions,
to quickly explore the configuration space. For the special case of number of epochs as a fidelity,
there also exists a rich literature on learning curve prediction [13, 46–49, 14]. Multi-fidelity op-
timization typically evaluates the most promising configurations on higher fidelities, including the
full budget. This style of optimization has proven a cost-efficient way of doing HPO for many ap-
plications. Still, multi-fidelity optimization has been explored only little in the context of RL. We
are only aware of three such works: Runge et al. [50] used a multi-fidelity optimizer to tune the
hyperparameters of a PPO agent [21] that was tasked with learning to design RNA, allowing the
so-tuned agent to substantially improve over the state of the art. Nguyen et al. [16] also modelled
the training curves, providing a signal to guide the search. In the realm of model-based RL, it was
shown that dynamic tuning methods such as PBT can produce well-performing policies but often
fail to generate robust results whereas static multi-fidelity approaches produced much more stable
configurations that might not result in as high final rewards [9]. Crucially, however, these previ-
ous studies did not evaluate how multi-fidelity and PBT style methods compare in the low budget
regime, a setting that is more realistic for most research groups.

B RCGP Pseudocode

We show the pseudocode in Algorithm 1. We stress that we are concurrently training one agent for
each hyperparameter configuration, but we advance only one training procedure at a time, using an
intelligent selection mechanism based on Bayesian optimization. In the first stage, we fit a GP (line
3) using the aforementioned novel kernel function that combines hyperparameter configurations,
budgets, and estimated rewards (Equations 4-7). Afterward, we select the next configuration with
the highest estimated acquisition at the end of the convergence (line 4). Then we train the RL agent
corresponding to the selected configuration for one more budget increment (e.g. continue training for
∆b = 10b more training steps) and measure the observed reward at the end of the next budget (lines
5-6). Note that line 5 defines the next budget for both new configurations (∄λnext : (λnext, ·, ·) ∈ H)
as well as existing ones. We add the evaluation to the history (line 7) and continue the BO procedure
until no budget is left (line 3).
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Algorithm 1: Gray-Box HPO for RL

Input : Search space Λ, initial design H(0), budget increment ∆b, max budget per agent bmax

Output: Best hyperparameter configuration λ∗

1 Evaluate initial configurations and budgets H := H(0) ;
2 while still budget do
3 Fit a GP on H using Equations 4-7, for estimating µ(λ, b), σ2(λ, b);

4 Run acquisition a(µ, σ) to select λnext := argmaxλ∈Λ a
(
µ(λ, bmax), σ2(λ, bmax)

)
;

5 Define the next budget until which to train the selected agent λnext:

bnext := min

(
bmax,

{
∆b ∄λnext : (λnext, ·, ·) ∈ H

∆b + max
(λnext,b,·)∈H

b, otherwise

)
;

6 Resume training agent with λnext until bnext and measure reward R (λnext, bnext);

7 Append to history H ← H ∪ {(λnext, bnext, R (λnext, bnext))};
8 end
9 return Best configuration λ∗ with highest reward max

(λ∗,b,R(λ∗,b))∈H
R (λ∗, b) ;

Table 1: Search spaces for HPO of PPO, A2C, DDPG, SAC, and TD3.
Algorithm Hyperparameters Hyperparameter Values

PPO
Learning rate (log10) {−6,−5,−4,−3,−2,−1}
γ {0.8, 0.9, 0.95, 0.98, 0.99, 1.0}
Clip {0.2, 0.3, 0.4}

A2C Learning rate (log10) {−6,−5,−4,−3,−2,−1}
γ {0.8, 0.9, 0.95, 0.98, 0.99, 1.0}

DDPG
Learning rate (log10) {−6,−5,−4,−3,−2,−1}
γ {0.8, 0.9, 0.95, 0.98, 0.99, 1.0}
τ {0.0001, 0.001, 0.005}

SAC
Learning rate (log10) {−6,−5,−4,−3,−2,−1}
γ {0.8, 0.9, 0.95, 0.98, 0.99, 1.0}
τ {0.0001, 0.001, 0.005}

TD3
Learning rate (log10) {−6,−5,−4,−3,−2,−1}
γ {0.8, 0.9, 0.95, 0.98, 0.99, 1.0}
τ {0.0001, 0.001, 0.005}

C Experimental Setup

C.1 Baselines

We focus on comparing the performance of RCGP to existing HPO approaches within a given time
budget. We compare against three types of baselines. The first type includes standard baselines that
do not utilize fidelity information during optimization, namely:

• Random Search (RS) [51] is a simple and common HPO baseline. It optimizes hyperpa-
rameters by selecting configurations uniformly at random.

• Bayesian optimization with Gaussian Proccesses (GP) [15] is another standard HPO
baseline, using GPs as the surrogate model in standard blackbox Bayesian optimization.
We used a GPytorch [52] implementation with a Matern 5/2 kernel.

The second type of baselines consists of multi-fidelity baselines which exploit intermediate learning
(a.k.a. reward) curve information. Concretely, we compare against the following multi-fidelity HPO
techniques:
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Table 2: List of environments for the experiments.
Environment Class Environment Name Action Space

Atari

Pong-v0
Alien-v0
BankHeist-v0
BeamRider-v0
Breakout-v0
Enduro-v0
Phoenix-v0
Seaquest-v0 Discrete
SpaceInvaders-v0
Riverraid-v0
Tennis-v0
Skiing-v0
Boxing-v0
Bowling-v0
Asteroids-v0

Classic Control

CartPole-v1
MountainCar-v0 Discrete
Acrobot-v1

Pendulum-v0 Continuous

MuJoCo
Ant-v2
Hopper-v2 Continuous
Humanoid-v2

• BOHB [43] is a multi-fidelity HPO baseline that combines Bayesian optimization and Hy-
perband [41]. It uses tree-based Parzen estimators (TPE) [53] as a surrogate model for
Bayesian optimization. We used the source code provided by the authors.

• SMAC [54] is a recent variant of BOHB that uses Random Forests (RF) as a surrogate
model. Here again, we used the implementation provided by the authors.

• DEHB [45] is a state-of-the-art multi-fidelity HPO baseline that combines Differential Evo-
lution and Hyperband. We used the source code released by the authors.

The third type of baselines includes online HPO techniques (which apply different hyperparameter
configurations within a single RL agent training procedure). We compare against two state-of-the-art
online HPO methods in RL, that are based on evolutionary search:

• Population-Based Training (PBT) [11] is an evolutionary HPO method that dynamically
optimizes the hyperparameters during the run of the algorithm (i.e., RL agent training).
It discards the worst-performing members of the population after a number of steps and
replaces them with new hyperparameter configurations that are generated by perturbing
the best-performing configuration. We used the PBT implementation in the Ray Tune li-
brary [55]. To facilitate a fair comparison on a small compute budget we follow the protocol
of [29] and use a population of 4 individuals.

• Population-based bandits (PB2) [29] is a PBT-like dynamic HPO method. It replaces the
random perturbation with a time-varying GP, as a mechanism to identify well-performing
regions of the search space. Again, we used the implementation of PB2 in the Ray Tune
library [55] with a population of 4 individuals.

D Additional Experimental Results

D.1 Ablating our design choices

Throughout the paper we based our technical novelty on the hypothesis that reward curves have
predictable shapes, and as a result, we can model them accurately with generalized logistic functions
(Equation 6). In this section, we ablate the effect of enriching the feature-space of our surrogate
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with the reward curve estimations, i.e. [λ, b] → [λ, b, R̂ (λ, b;w)]. The ablations of Figure 2-3
demonstrate that using our novel reward curve modeling offers a major boost on the quality of
the optimization. In addition, we ablate the effect of the max-smoothing transformation of the
reward curves (Equation 1). The empirical results further demonstrate that smoothing the noisy
reward curves improves the performance of RCGP in the low-budget regime, especially as the early
segments of reward curves are very noisy.
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Figure 2: Rank comparison of RCGP (i) without reward curve model, (ii) with raw reward curve
information, and (iii) with max-smoothing of the reward curve, for the PPO search space in the
Atari, Classic Control, and Mujoco environments.
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Figure 3: Rank comparison of RCGP (i) without reward curve model, (ii) with raw reward curve
information, and (iii) with max-smoothing of the reward curve curve, for the A2C search space in
the Atari, Classic Control, and Mujoco environments.

D.2 Comparison to Baselines
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Figure 4: Rank comparison of RS, GP, and RCGP for the PPO search space in the Atari, Classic
Control, and Mujoco environments.
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Figure 5: Rank comparison of RS, GP, and RCGP for the A2C search space in the Atari, Classic
Control, and Mujoco environments.
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Figure 6: Rank comparison of RS, GP, and RCGP in the MuJoCo enviroments for the DDPG, SAC,
and TD3 search spaces.
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Figure 7: Ranks of BOHB, SMAC, DEHB, and RCGP in Atari, Classic control and MuJoCo envi-
roments for the PPO search space..
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Figure 8: Ranks of BOHB, SMAC, DEHB, and RCGP in Atari, Classic control and MuJoCo envi-
roments for the A2C search space.
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Figure 9: Ranks of BOHB, SMAC, DEHB, and RCGP in the MuJoCo enviroments for the DDPG,
SAC, and TD3 search space.
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Figure 10: Ranks of PBT, PB2, and RCGP for the PPO search space in the Atari, Classic Control,
and Mujoco environments.
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Figure 11: Ranks of PBT, PB2, and RCGP for the A2C search space in the Atari, Classic Control,
and Mujoco environments.
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Figure 12: Ranks of PBT, PB2, and RCGP in the Mujoco enviroments for the TD3 search space.
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