CANDID DAC

Coupled ActioN Dimensions with Importance Differences

Philipp Bordne¹, M. Asif Hasan¹, Eddie Bergman¹, Noor Awad¹, André Biedenkapp¹ ¹University of Freiburg

In a Nutshell

- We factorize high-dimensional action-spaces avoiding combinatorial explosion while preserving ability to coordinate
- We employ sequential policies to learn a policy per action dimension (hyperparameter)
 - Set hyperparameters in order of importance
 - Condition on already set hyperparameters
 - Propose new TD-update for sequential policies
- We propose a new toy-benchmark to evaluate RL-algorithms under the CANDID setting

Sequential Policies for DAC

universitätfreiburg

We evaluate DDQN-based sequential policies on our new 4. **benchmark** against single policy and independent factorized policy baselines

Piecewise Linear Benchmark

Example of Benchmark Instance (5D action space)

Task: Coordinate action dimensions to progressively fine-tune predictions on target function.

Comparing Rewards per Action Combination (2D action space)

Challenge for factorized policies: Independent optimization of action dimensions not possible in Piecewise Linear benchmark.

Experiments on Piecewise Linear Benchmark

SAQL scales both with dimensionality and no. of action choices (1+3)

simSDQN takes longer to learn (4) and is negatively impacted by dimensionality (

IQL fails to coordinate even in simplest case (2) **DDQN** does not scale with action space size (dimensionality AND no. of choices, 1+3)

 \rightarrow Sequential policies promising to better solve DAC (**SAQL** seems more scalable)

> **Baselines** factorized + independent single

*: no fine-tuning apart from 1st dimension possible

optimizer

optimizer

Sequential Policy Variants

Differ by TD-Updates:

simSDQN: solve extended MDP explicitly **SAQL:** sequential game

Future Work

- Extended evaluation of sequential policies: • Real world settings Advanced MARL baselines (VDN/QMIX)
- Advancement of framework: Advanced communication (e.g., learned message passing) Combine with value function factorization
 - Joint exploration schemes

https://github.com/PhilippBordne/candidDAC.git