Efficient Parameter Importance Analysis via Ablation with Surrogates

André Biedenkapp, Marius Lindauer Katharina Eggensperger, Frank Hutter University of Freiburg

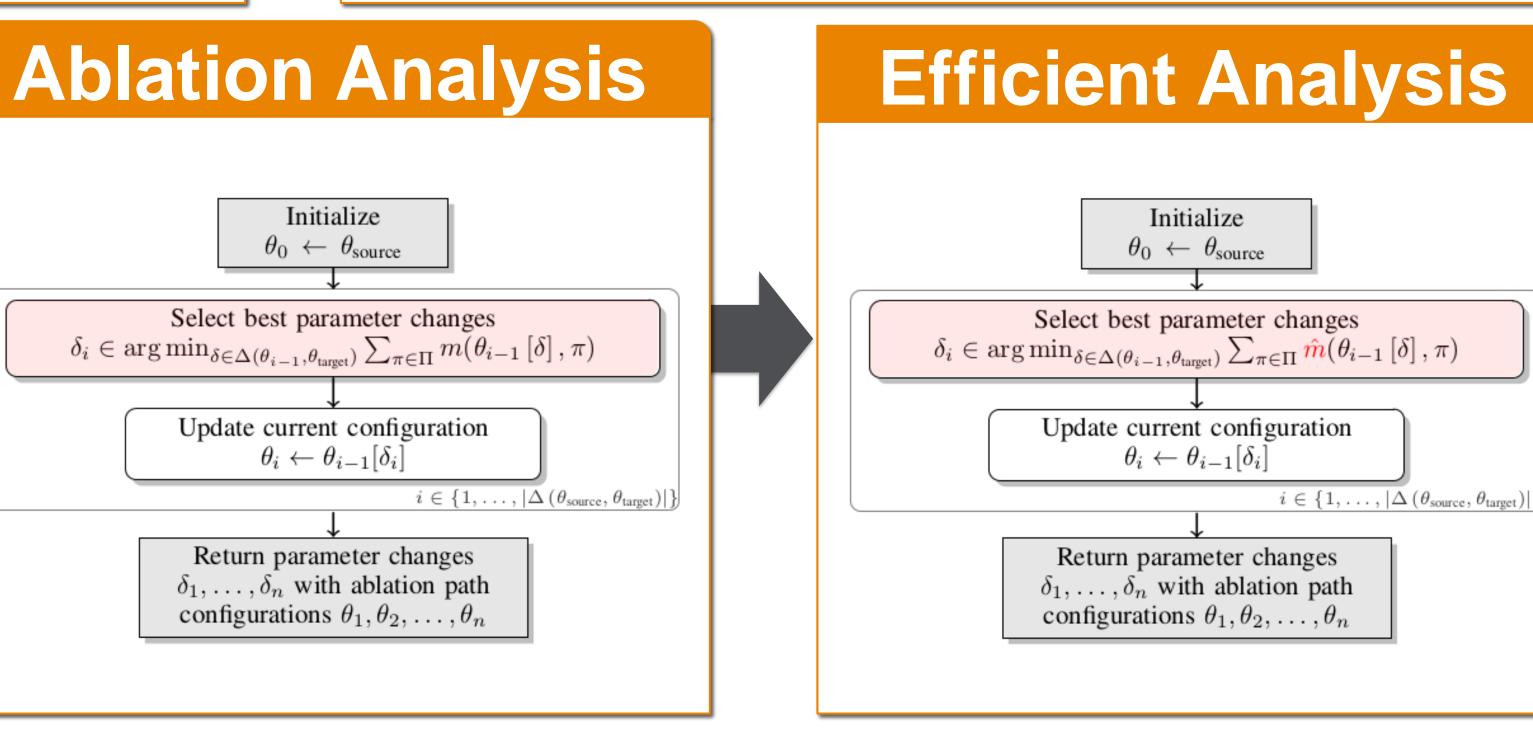
Albert-Ludwigs-Universität Freiburg

Chris Fawcett Holger Hoos University of British Columbia

 Algorithm configuration often necessary to achieve peak performance (e.g., in MIP, AI Planning, SAT and ASP)

In a Nutshell

- Costly parameter importance analysis to understand which parameter changes are responsible for performance improvements
- Reducing the cost of ablation analysis by using predictions from empirical performance models instead of real algorithm runs
- Speed-up factors between 33 and 14 727 in comparison to ablation analysis with racing
- Ablation [Fawcett and Hoos. MIC 2013, Journal of Heuristics 2016]: introduced ablation analysis + racing-based extension to reduce time
- **FANOVA** [Hutter et al. ICML 2014]: parameter importance with functional ANOVA using random forests


Related Work

- **Empirical performance models** [Hutter et al. AIJ 2014]: predict performance of parameter configuration on given instance
- Using surrogates for efficient hyperparameter optimization benchmarks [Eggensperger et al. AAAI 2015]: using predictions from empirical performance models instead of real algorithm runs

Notation

- θ_{source} e.g., default configuration
- θ_{target} e.g., optimized configuration
- *m* performance metric (e.g., running time)
- П instance set (e.g., SAT or MIP instances)
- Δ(·,·) parameter values differing between two configurations
- κ running time cutoff
- $\widehat{m}: \Theta \times \Pi \to \mathbb{R}$ empirical performance model

Our Approach

- **1.** Gather training data
 - During configuration, lot of data is generated
 → Focus on high performance regions

2. Train EPM

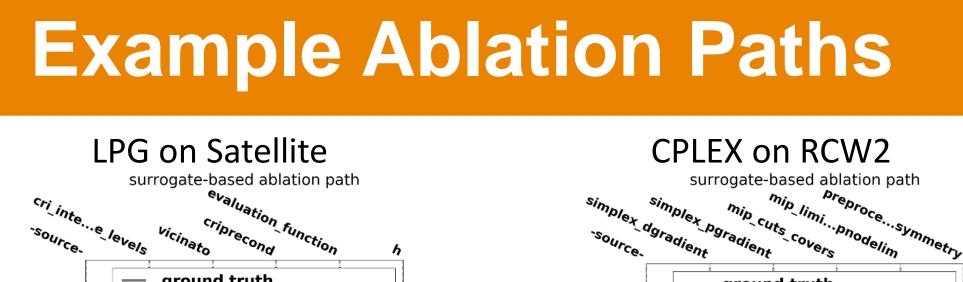
- Predict log-running time [Hutter et al. AlJ 2014]
- Impute right-censored data [Schmee & Hahn 1979; Hutter et al. 2011]
- **3.** Run efficient ablation analysis

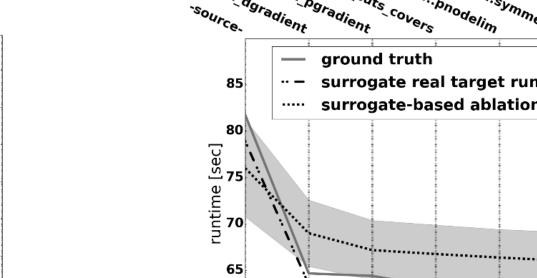
Expected Penalized Runtime

Distribution of running time prediction:

$$\int_0^{\kappa} t \cdot p(t) \mathrm{d}t + \int_{\kappa}^{\infty} X \cdot \kappa \cdot p(t) \mathrm{d}t$$

How to approximate?

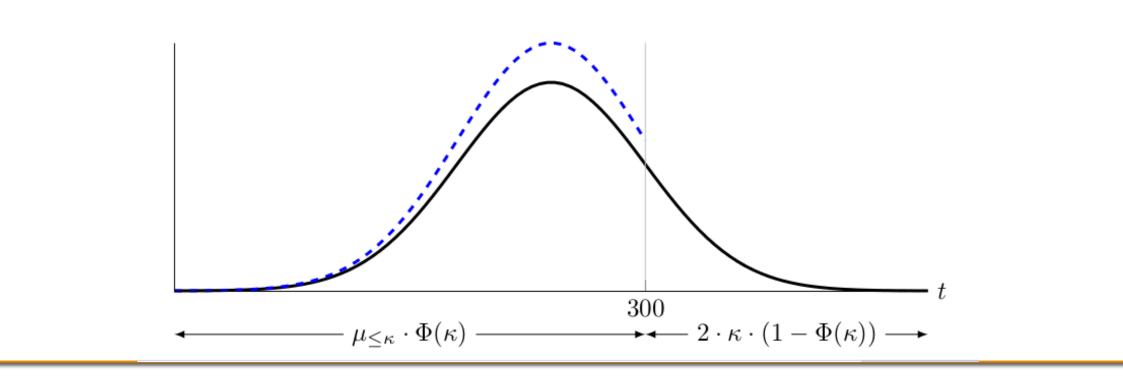

- mean $\mu_{\leq k}$ from truncated normal distribution $\mathcal{N}(\mu, \sigma^2)_{\leq \kappa}$ with μ being predicted running time and σ^2 predicted variance
- $\Phi(\cdot)$ is CDF of $\mathcal{N}(\mu, \sigma^2)$

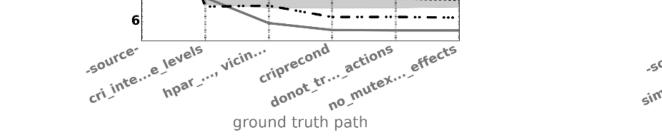

AClib Benchmarks

Benchmark	#P	κ	#Inst.	Budget	#Data	
		[sec]	Train/Test	[h]		
SPEAR-QCP	26	5	976/2000	80	200k	
SPEAR-SWV	26	300	302/302	768	200k	- SAT
CPLEX-RCW2	76	$10\ 000$	495/495	768	33k	MIP
CLASP-WS	99	900	240/240	1536	119k	ASP
LPG-SATELLITE	66	300	2000/2000	768	200k	
LPG-DEPOTS	66	300	2000/2000	768	200k	
\						

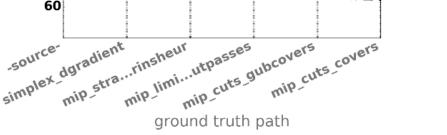
→ Broadly applicable!

see www.aclib.net





$$\mu_{\leq\kappa} \cdot \Phi(\kappa) + X \cdot \kappa \cdot (1 - \Phi(\kappa))$$


Example:

- PAR2 (X=2) with $\kappa = 300$, and predictions $\mu = 250$ and $\sigma = 50$
- Black is $\mathcal{N}(\mu, \sigma^2)$; dashed blue is $\mathcal{N}(\mu, \sigma^2)_{\leq \kappa}$
- Expected PAR2 is 293

surrogate real target runs surrogate-based ablation



+-----

Running Time [min]

	Fu	11	Rac	cing	Surro.	
benchmark	Train	Test	Train	Test	Train	Test
SPEAR-QCP	921	78	91	68	4 (0.75
SPEAR-SWV	853	44	316	71	1 (0.20
CPLEX-RCW2	$121\ 279$	$11\ 639$	$21\ 290$	$11\ 552$	2 (0.23
CLASP-WS	$159\ 799$	$8\ 266$	$57\ 689$	$8\ 323$	6 (0.50
LPG-DEPOTS	$30\ 556$	$1\ 023$	366	$1\ 060$	10 (0.80
LPG-SATELLITE	113 126	$6\ 533$	5783	$6\ 162$	21 (1.17

Train: compute ablation path Test: validate on test instances

Available at: http://www.ml4aad.org